• Title/Summary/Keyword: 야금

Search Result 3,562, Processing Time 0.026 seconds

Modeling the Density and Hardness of AA2024-SiC Nanocomposites

  • Jeon, A-Hyun;Kim, Hong In;Sung, Hyokyung;Reddy, N.S.
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • An artificial neural network (ANN) model is developed for the analysis and simulation of correlation between flake powder metallurgy parameters and properties of AA2024-SiC nanocomposites. The input parameters of the model are AA 2024 matrix size, ball milling time, and weight percentage of SiC nanoparticles and the output parameters are density and hardness. The model can predict the density and hardness of the unseen test data with a correlation of 0.986 beyond the experimental data. A user interface is designed to predict properties at new instances. We have used the model to simulate the individual as well as the combined influence of parameters on the properties. Moreover, we have analyzed the calculated results from the powder metallurgical point of view. The developed model can be used as a guide for further composite development.

Spheroidization of Pure-vanadium Powder using Radio Frequency Thermal Plasma Process (RF 플라즈마를 이용한 순수 바나늄 분말의 구상화 거동 연구)

  • Adomako, Nana Kwabena;Yang, Seungmin;Lee, Min Gyu;Reddy, N.S.;Kim, Jeoung-Han
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.305-310
    • /
    • 2019
  • In the present work, spheroidization of angular vanadium powders using a radio frequency (RF) thermal plasma process is investigated. Initially, angular vanadium powders are spheroidized successfully at an average particle size of $100{\mu}m$ using the RF-plasma process. It is difficult to avoid oxide layer formation on the surface of vanadium powder during the RF-plasma process. Titanium/vanadium/stainless steel functionally graded materials are manufactured with vanadium as the interlayer. Vanadium intermediate layers are deposited using both angular and spheroidized vanadium powders. Then, 17-4PH stainless steel is successfully deposited on the vanadium interlayer made from the angular powder. However, on the surface of the vanadium interlayer made from the spheroidized powder, delamination of 17-4PH occurs during deposition. The main cause of this phenomenon is presumed to be the high thickness of the vanadium interlayer and the relatively high level of surface oxidation of the interlayer.

Atomic Layer Deposition for Powder Coating (분말 코팅을 위한 원자층 증착법)

  • Choi, Seok;Han, Jeong Hwan;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.243-250
    • /
    • 2019
  • Atomic layer deposition (ALD) is widely used as a tool for the formation of near-atomically flat and uniform thin films in the semiconductor and display industries because of its excellent uniformity. Nowadays, ALD is being extensively used in diverse fields, such as energy and biology. By controlling the reactivity of the surface, either homogeneous or inhomogeneous coating on the shell of nanostructured powder can be accomplished by the ALD process. However, the ALD process on the powder largely depends on the displacement of powder in the reactor. Therefore, the technology for the fluidization of the powder is very important to redistribute its position during the ALD process. Herein, an overview of the three types of ALD reactors to agitate or fluidize the powder to improve the conformality of coating is presented. The principle of fluidization its advantages, examples, and limitations are addressed.

Microstructure and Characterization of Overlay Welding Layer using Fe-based Composite Powders (철계 복합 분말로 제조된 오버레이 용접층의 미세조직 및 특성)

  • Min, Hong;Lee, Jong-Jae;Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.214-219
    • /
    • 2019
  • In this study, the microstructure and characterization of an overlay welding layer using Fe-based composite powders are reported. The effects of the number of passes and composition of powders on the microstructure and mechanical properties are investigated in detail. The welding wire and powders are deposited twice on a stainless-steel rod using a laser overlay welding process. The microstructure and structural characterization are performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the first and second overlay layers are analyzed through the micro-Vickers-hardness tester and abrasion wear tester. In the second overlay layer, the hardness and specific wear are approximately 840 Hv and $2.0{\times}10^{-5}mm^3/Nm$, respectively. It is suggested that the increase of the volume fractions of $(Cr,Fe)_7C_3$ and NbC phases in the second welding layer enhances the hardness and wear resistance.

Fabrication and Characterization of Highly Reactive Al/CuO Nano-composite using Graphene Oxide (산화그래핀을 적용한 고반응성 Al/CuO 나노복합재 제조 및 분석)

  • Lim, YeSeul
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.220-224
    • /
    • 2019
  • The aluminum (Al)/copper oxide (CuO) complex is known as the most promising material for thermite reactions, releasing a high heat and pressure through ignition or thermal heating. To improve the reaction rate and wettability for handling safety, nanosized primary particles are applied on Al/CuO composite for energetic materials in explosives or propellants. Herein, graphene oxide (GO) is adopted for the Al/CuO composites as the functional supporting materials, preventing a phase-separation between solvent and composites, leading to a significantly enhanced reactivity. The characterizations of Al/CuO decorated on GO(Al/CuO/GO) are performed through scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping analysis. Moreover, the functional bridging between Al/CuO and GO is suggested by identifying the chemical bonding with GO in X-ray photoelectron spectroscopy analysis. The reactivity of Al/CuO/GO composites is evaluated by comparing the maximum pressure and rate of the pressure increase of Al/CuO and Al/CuO/GO. The composites with a specific concentration of GO (10 wt%) demonstrate a well-dispersed mixture in hexane solution without phase separation.

Prediction the Phase Transformation Time of Binary Alloy System by calculating the Input Energy of Mechanical Alloying (기계적 합금화 투입에너지 계산에 의한 이원합금계의 상변태 시간 예측)

  • Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.107-111
    • /
    • 2019
  • The activation energy to create a phase transformation or for the reaction to move to the next stage in the milling process can be calculated from the slop of the DSC plot, obtained at the various heating rates for mechanically activated Al-Ni alloy systems by using Kissinger's equation. The mechanically activated material has been called "the driven material" as it creates new phases or intermetallic compounds of AlNi in Al-Ni alloy systems. The reaction time for phase transformation by milling can be calculated using the activation energy obtained from the above mentioned method and from the real required energy. The real required energy (activation energy) could be calculated by subtracting the loss energy from the total input energy (calculated input energy from electric motor). The loss energy and real required energy divided by the reaction time are considered the "metabolic energy" and "the effective input energy", respectively. The milling time for phase transformation at other Al-Co alloy systems from the calculated data of Al-Ni systems can be predicted accordingly.

Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process (고밀도화 공정에 의한 Fe-Co 계 밸브시트 합금의 조직변화와 열적 특성)

  • Ahn, In-Shup;Park, Dong-Kyu;Ahn, Kwang-Bok;Shin, Seoung-Mok
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.112-118
    • /
    • 2019
  • Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.

Nanodiamonds Conjugated with Nonsteroidal Anti-inflammatory Drugs for Transdermal Delivery

  • Rhee, Changkyu;Puzyr, Alexey P.;Burov, Andrey E.;Burova, Olga G.;Kim, Whungwhoe;Bondar, Vladimir S.
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.459-465
    • /
    • 2018
  • Most commercially available detonation nanodiamonds (DNDs) require further processing to qualify for use in biomedical applications, as they often contain many impurities and exhibit poor dispersibility in aqueous media. In this work, DNDs are modified to improve purity and impart a high colloidal stability to the particles. The dispersive and adsorption properties of modified DNDs are evaluated in terms of the suitability of DNDs as carriers for non-steroidal anti-inflammatory drugs (NSAIDs) in transdermal delivery. The study of adsorption on strongly positively and strongly negatively charged DNDs showed their high loading capacity for NSAIDs, and a pronounced relationship between the drugs and the particles' charges. Experiments on long-term desorption carried out with DND/NSAID complexes indicate that the nanoparticles exert a sustained effect on the drug release process.

A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries

  • Vu, Duc-Luong;Lee, Jae-Won
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.466-474
    • /
    • 2018
  • The high theoretical energy density ($2600Wh\;kg^{-1}$) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur ($1672mAh\;g^{-1}$) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of $1400mAh\;g^{-1}$ at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a $1200mAh\;g^{-1}$ initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.

Recent Development in Fabrication and Control of Layered-Double Hydroxide Nanostructures (층상 이중 수산화물 나노물질의 성장 제어기술 연구동향)

  • Jeon, Chan-Woo;Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.514-522
    • /
    • 2018
  • Layered-double hydroxide (LDH)-based nanostructures offer the two-fold advantage of being active catalysts with incredibly large specific surface areas. As such, they have been studied extensively over the last decade and applied in roles as diverse as light source, catalyst, energy storage mechanism, absorber, and anion exchanger. They exhibit a unique lamellar structure consisting of a wide variety of combinations of metal cations and various anions, which determine their physical and chemical performances, and make them a popular research topic. Many reviewed papers deal with these unique properties, synthetic methods, and applications. Most of them, however, are focused on the form-factor of nanopowder, as well as on the control of morphologies via one-step synthetic methods. LDH nanostructures need to be easy to control and fabricate on rigid substrates such as metals, semiconductors, oxides, and insulators, to facilitate more viable applications of these nanostructures to various solid-state devices. In this review, we explore ways to grow and control the various LDH nanostructures on rigid substrates.