• 제목/요약/키워드: 야금

검색결과 3,562건 처리시간 0.025초

개선된 회귀착점 방법을 이용한 이방성 적층구조물의 소성해석 (Analysis of Anisotropic Plasticity of Additively Manufactured Structure using Modified Return Mapping Method)

  • 양승용;진두한;김정한
    • 한국분말재료학회지
    • /
    • 제29권4호
    • /
    • pp.303-308
    • /
    • 2022
  • The plastic deformation behavior of additively manufactured anisotropic structures are analyzed using the finite element method (FEM). Hill's quadratic anisotropic yield function is used, and a modified return-mapping method based on dual potential is presented. The plane stress biaxial loading condition is considered to investigate the number of iterations required for the convergence of the Newton-Raphson method during plastic deformation analysis. In this study, incompressible plastic deformation is considered, and the associated flow rule is assumed. The modified return-mapping method is implemented using the ABAQUS UMAT subroutine and effective in reducing the number of iterations in the Newton-Raphson method. The anisotropic tensile behavior is computed using the 3-dimensional FEM for two tensile specimens manufactured along orthogonal additive directions.

이방성 재료의 소성변형 해석을 위한 고정점 축차 (Fixed-point Iteration for the Plastic Deformation Analysis of Anisotropic Materials)

  • 양승용;김정한
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.29-34
    • /
    • 2023
  • A fixed-point iteration is proposed to integrate the stress and state variables in the incremental analysis of plastic deformation. The Conventional Newton-Raphson method requires a second-order derivative of the yield function to generate a complicated code, and the convergence cannot be guaranteed beforehand. The proposed fixed-point iteration does not require a second-order derivative of the yield function, and convergence is ensured for a given strain increment. The fixed-point iteration is easier to implement, and the computational time is shortened compared with the Newton-Raphson method. The plane-stress condition is considered for the biaxial loading conditions to confirm the convergence of the fixed-point iteration. 3-dimensional tensile specimen is considered to compare the computational times in the ABAQUS/explicit finite element analysis.

용해도 개선을 위한 레보설피라이드 무정형 분무 건조 미세분말의 제조 및 평가 (Fabrication and Evaluation of Levosulpiride-loaded Amorphous Spray-dried Microparticle for Improved Solubility)

  • 진성규
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.47-52
    • /
    • 2023
  • The purpose of this study is to develop and evaluate amorphous spray-dried microparticles (SDM) containing levosulpiride to increase its solubility. SDM are prepared via solvent evaporation using polyvinylpyrrolidone (PVP) as the water-soluble polymer and Cremophor RH40 as the surfactant. The SDM is prepared by varying the amounts of PVP and Cremophor RH40, and its physicochemical properties, solubility, and dissolution are confirmed. All levosulpiride-loaded SDMs converted the crystalline drug into an amorphous form, significantly improving drug solubility and dissolution compared with the drug alone. SDM consisting of drug/PVP/Cremophor RH40 in a weight ratio of 5:10:3, with increased solubility (720 ± 36 vs. 1822 ± 51 ㎍/mL) and dissolution rate (10.3 ± 2.2 vs. 92.6 ± 6.0%) compared with drug alone, shows potential as a commercial drug for improved oral bioavailability of levosulpiride.

중공 유리 마이크로스피어 혼입 시멘트 복합체의 내열충격성 향상에 대한 실험적 연구 (Experimental Study on Improving Thermal Shock Resistance of Cement Composite Incorporating Hollow Glass Microspheres)

  • 최요민;신현규
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.505-510
    • /
    • 2022
  • The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50℃. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer

  • Chang-Yeoul, Kim
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.453-458
    • /
    • 2022
  • We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

Eco-Friendly Powder and Particles-Based Triboelectric Energy Harvesters

  • Rayyan Ali Shaukat;Jihun Choi;Chang Kyu Jeong
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.528-535
    • /
    • 2023
  • Since their initial development in 2012, triboelectric nanogenerators (TENGs) have gained popularity worldwide as a desired option for harnessing energy. The urgent demand for TENGs is attributed to their novel structural design, low cost, and use of large-scale materials. The output performance of a TENG depends on the surface charge density of the friction layers. Several recycled and biowaste materials have been explored as friction layers to enhance the output performance of TENGs. Natural and oceanic biomaterials have also been investigated as alternatives for improving the performance of TENG devices. Moreover, structural innovations have been made in TENGs to develop highly efficient devices. This review summarizes the recent developments in recycling and biowaste materials for TENG devices. The potential of natural and oceanic biowaste materials is also discussed. Finally, future outlooks for the structural developments in TENG devices are presented.

Research Trends in Electromagnetic Shielding using MXene-based Composite Materials

  • Siyeon Kim;Jongmin Byun
    • 한국분말재료학회지
    • /
    • 제31권1호
    • /
    • pp.57-76
    • /
    • 2024
  • Recent advancements in electronic devices and wireless communication technologies, particularly the rise of 5G, have raised concerns about the escalating electromagnetic pollution and its potential adverse impacts on human health and electronics. As a result, the demand for effective electromagnetic interference (EMI) shielding materials has grown significantly. Traditional materials face limitations in providing optimal solutions owing to inadequacy and low performance due to small thickness. MXene-based composite materials have emerged as promising candidates in this context owing to their exceptional electrical properties, high conductivity, and superior EMI shielding efficiency across a broad frequency range. This review examines the recent developments and advantages of MXene-based composite materials in EMI shielding applications, emphasizing their potential to address the challenges posed by electromagnetic pollution and to foster advancements in modern electronics systems and vital technologies.

Bandgap Tuning and Quenching Effects of In(Zn)P@ZnSe@ZnS Quantum Dots

  • Sang Yeon Lee;Su Hyun Park;Gyungsu Byun;Chang-Yeoul Kim
    • 한국분말재료학회지
    • /
    • 제31권3호
    • /
    • pp.226-235
    • /
    • 2024
  • InP quantum dots (QDs) have attracted researchers' interest due to their applicability in quantum dot light-emitting displays (QLED) or biomarkers for detecting cancers or viruses. The surface or interface control of InP QD core/ shell has substantially increased quantum efficiency, with a quantum yield of 100% reached by introducing HF to inhibit oxide generation. In this study, we focused on the control of bandgap energy of quantum dots by changing the Zn/(In+Zn) ratio in the In(Zn)P core. Zinc incorporation can change the photoluminescent light colors of green, yellow, orange, and red. Diluting a solution of as-synthesized QDs by more than 100 times did not show any quenching effects by the Förster resonance energy transfer phenomenon between neighboring QDs.

분말 반응법에 의한 YBa2Cu3O7-y 합성과 벌크 초전도체의 제조 (Synthesis of YBa2Cu3O7-y Powder using a Powder Reaction Method and Fabrication of the Bulk Superconductors)

  • 전영주;박승연;유병윤;박순동;김찬중
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.142-147
    • /
    • 2013
  • $YBa_2Cu_3O_{7-y}$ (Y123) powders for the fabrication of bulk superconductors were synthesized by the powder reaction method using $Y_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The raw powders were weighed to the cation ratio of Y:Ba:Cu=1:2:3, mixed and calcined at $880^{\circ}C-930^{\circ}C$ in air with intermediate repeated crushing steps. It was found that the formation of Y123 powder was more sensitive to reaction temperature than reaction time. The calcined Y123 powder and a mixture of (Y123 + 0.25 mole $Y_2O_3$ + 1 wt.% $CeO_2$, $Y_{1.5}Ba_2Cu_3O_x$ (Y1.5)) were used as raw powders for the fabrication of poly-grain or single grain superconductors. The superconducting transition temperature ($T_{c,onset}$) of the sintered Y123 sample was 91 K and the transition width was as large as 11 K, whereas the $T_{c,onset}$ of the melt-grown Y1.5 sample was 90.5 K and the transition width was 3.5 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Y123 was 700 $A/cm^2$, whereas the $J_c$ of the top-seeded melt growth (TSMG) processed Y1.5 sample was $3.2{\times}10^4\;A/cm^2$. The magnetic flux density (H) at 77 K of the TSMG-processed Y123 and Y1.5 sample showed the 0.53 kG and 2.45 kG, respectively, which are 15% and 71% of the applied magnetic field of 3.5 kG. The high H value of the TSMG-processed Y1.5 sample is attributed to the formation of the larger superconducting grain with fine Y211 dispersion.

Aluminum Powder Metallurgy Current Status, Recent Research and Future Directions

  • Schaffer, Graham
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2001년도 추계학술강연 및 발표대회
    • /
    • pp.7-7
    • /
    • 2001
  • The increasing interest in light weight materials coupled to the need for cost -effective processing have combined to create a significant opportunity for aluminum P/M. particularly in the automotive industry in order to reduce fuel emissions and improve fuel economy at affordable prices. Additional potential markets for Al PIM parts include hand tools. Where moving parts against gravity represents a challenge; and office machinery, where reciprocating forces are important. Aluminum PIM adds light weight, high compressibility. low sintering temperatures. easy machinability and good corrosion resistance to all advantages of conventional iron bm;ed P/rv1. Current commercial alloys are pre-mixed of either the AI-Si-Mg or AL-Cu-Mg-Si type and contain 1.5% ethylene bis-stearamide as an internal lubricant. The powder is compacted in closed dies at pressure of 200-500Mpa and sintered in nitrogen at temperatures between $580~630^{\circ}C$ in continuous muffle furnace. For some applications no further processing is required. although most applications require one or more secondary operations such as sizing and finishing. These sccondary operations improve the dimension. properties or appearance of the finished part. Aluminum is often considered difficult to sinter because of the presence of a stable surface oxide film. Removal of the oxide in iron and copper based is usually achieved through the use of reducing atmospheres. such as hydrogen or dissociated ammonia. In aluminum. this occurs in the solid st,lte through the partial reduction of the aluminum by magncsium to form spinel. This exposcs the underlying metal and facilitates sintering. It has recently been shown that < 0.2% Mg is all that is required. It is noteworthy that most aluminum pre-mixes contain at least 0.5% Mg. The sintering of aluminum alloys can be further enhanced by selective microalloying. Just 100ppm pf tin chnnges the liquid phase sintering kinetics of the 2xxx alloys to produce a tensile strength of 375Mpa. an increilse of nearly 20% over the unmodified alloy. The ductility is unnffected. A similar but different effect occurs by the addition of 100 ppm of Pb to 7xxx alloys. The lend changes the wetting characteristics of the sintering liquid which serves to increase the tensile strength to 440 Mpa. a 40% increase over unmodified aIloys. Current research is predominantly aimed at the development of metal matrix composites. which have a high specific modulus. good wear resistance and a tailorable coefficient of thermal expnnsion. By controlling particle clustering and by engineering the ceramic/matrix interface in order to enhance sintering. very attractive properties can be achicved in the ns-sintered state. I\t an ils-sintered density ilpproaching 99%. these new experimental alloys hnve a modulus of 130 Gpa and an ultimate tensile strength of 212 Mpa in the T4 temper. In contest. unreinforcecl aluminum has a modulus of just 70 Gpa.

  • PDF