• Title/Summary/Keyword: 야금

Search Result 3,562, Processing Time 0.022 seconds

Preparation of Metal Injection Molded Dental Components using Spheroidized Ti Powders by Plasma Process (플라즈마 공정으로 구상화된 티타늄 분말과 금속사출성형 공정을 이용한 치과용 부품 제조)

  • Gwak, Ji-Na;Yang, Sangsun;Yun, Jung-Yeul;Kim, Ju-Yong;Park, Seongjin;Kim, Hyun-Seung;Kim, Yong-Jin;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.467-473
    • /
    • 2013
  • This research presents a preparation method of dental components by metal injection molding process (MIM process) using titanium scrap. About $20{\mu}m$ sized spherical titanium powders for MIM process were successfully prepared by a novel dehydrogenation and spheroidization method using in-situ radio frequency thermal plasma treatment. The effects of MIM process parameters on the mechanical and biological properties of dental components were investigated and the optimum condition was obtained. After sintering at $1250^{\circ}C$ for 1 hour in vacuum, the hardness and the tensile strength of MIMed titanium components were 289 Hv and 584 MPa, respectively. Prepared titanium dental components were not cytotoxic and they showed a good cell proliferation property.

The Oxidation Behavior of Sintered STS 316L at High-Temperature in the Air (STS 316L 소결체의 대기중 고온산화 거동)

  • Kim, Hye Seong;Lee, Jong Pil;Park, Dong Kyu;Ahn, In Shup
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.432-438
    • /
    • 2013
  • In this study, analysis on the oxidation behavior was conducted by a series of high-temperature oxidation tests at both $800^{\circ}C$, $900^{\circ}C$ and 1000 in the air with sintered STS 316L. The weight gain of each oxidized specimen was measured, the oxidized surface morphologies and composition of oxidation layer were analyzed with Scanning Electron Microscope-Energy Dispersive x-ray Spectroscopy (SEM-EDS), finally, the phase change and composition of the oxidized specimen were shown by X-Ray Diffraction (XRD). As a result, the weight gain increased sharply at $1000^{\circ}C$ when oxidation test was conducted for 210 hours. Also, a plentiful of pores were observed in the surface oxidation layers at $900^{\circ}C$ for 210 hours. In addition, the following conclusions on oxidation behavior of sintered STS 316L can be obtained: $Cr_2O_3$ can be formed on pores by influxing oxygen through open-pores, $(Fe_{0.6}Cr_{0.4})_2O_3$ can be generated on the inner oxidation layer, and $Fe_2O_3$ was on the outer oxidation layer. Also, $NiFe_2O_4$ could be precipitated if the oxidation time was kept longer.

Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts

  • Kim, Kyungho;Lee, Sungmin;Im, Chae-Nam;Kang, Seung-Ho;Cheong, Hae-Won;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.364-369
    • /
    • 2017
  • Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with $300{\mu}m$ thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.

Manufacturing of Ni-Cr-B-Si + WC/12Co Composite Coating Layer Using Laser Cladding Process and its Mechanical Properties (레이저 클래딩 공정을 이용한 Ni-Cr-B-Si + WC/12Co 복합 코팅층의 제조 및 기계적 특성)

  • Ham, Gi-Su;Kim, Chul-O;Park, Soon-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.370-376
    • /
    • 2017
  • In this study we manufacture a Ni-Cr-B-Si +WC/12Co composite coating layer on a Cu base material using a laser cladding (LC) process, and investigate the microstructural and mechanical properties of the LC coating and Ni electroplating layers (reference material). The initial powder used for the LC coating layer is a powder feedstock with an average particle size of $125{\mu}m$. To identify the microstructural and mechanical properties, OM, SEM, XRD, room and high temperature hardness, and wear tests are implemented. Microstructural observation of the initial powder and LC coating layer confirm the layer is composed mainly of ${\gamma}-Ni$ phases and WC and $Cr_{23}C_6$ carbides. The measured hardness of the LC coating and Ni electroplating layers are 653 and 154 Hv, respectively. The hardness measurement from room up to high temperatures of $700^{\circ}C$ result in a hardness decrease as the temperature increases, but the hardness of the LC coating layer is higher for all temperature conditions. Room temperature wear results show that the wear loss of the LC coating layer is 1/12 of the wear level of the Ni electroplating layer. The measured bond strength is also greater in the LC coating than the Ni electroplating.

Microstructure and Electric Contact Properties of Spark Plasma Sintered Ta-Cu Composite (방전플라즈마 소결법으로 제조된 Ta-Cu의 미세조직 및 전기접점 특성)

  • Ju, Won;Kim, Young Do;Sim, Jae Jin;Choi, Sang-Hoon;Hyun, Soong Keun;Lim, Kyoung Mook;Park, Kyoung-Tae
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.377-383
    • /
    • 2017
  • Microstructure, electric, and thermal properties of the Ta-Cu composite is evaluated for the application in electric contact materials. This material has the potential to be used in a medium for a high current range of current conditions, replacing Ag-MO, W, and WC containing materials. The optimized SPS process conditions are a temperature of $900^{\circ}C$ for a 5 min holding time under a 30 MPa mechanical pressure. Comparative research is carried out for the calculated and actual values of the thermal and electric properties. The range of actual thermal and electric properties of the Ta-Cu composite are 50~300 W/mk and 10~90 %IACS, respectively, according to the compositional change of the 90 to 10 wt% Ta-Cu system. The results related to the electric contact properties, suggest that less than 50 wt% of Ta compositions are possible in applications of electric contact materials.

Characteristics of WO3-CuO Powder Mixture Prepared by High-Energy Ball Milling in a Bead Mill for the Synthesis of W-Cu Nanocomposite Powder (W-Cu 나노분말 합성을 위해 비드밀에서 고에너지 볼밀링 공정에 의해 제조된 WO3-CuO 혼합분말의 특성 연구)

  • Park, Hae-Ryong;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.406-413
    • /
    • 2017
  • A Nanosized $WO_3$ and CuO powder mixture is prepared using novel high-energy ball milling in a bead mill to obtain a W-Cu nanocomposite powder, and the effect of milling time on the structural characteristics of $WO_3-CuO$ powder mixtures is investigated. The results show that the ball-milled $WO_3-CuO$ powder mixture reaches at steady state after 10 h milling, characterized by the uniform and narrow particle size distribution with primary crystalline sizes below 50 nm, a specific surface area of $37m^2/g$, and powder mean particle size ($D_{50}$) of $0.57{\mu}m$. The $WO_3-CuO$ powder mixtures milled for 10 h are heat-treated at different temperatures in $H_2$ atmosphere to produce W-Cu powder. The XRD results shows that both the $WO_3$ and CuO phases can be reduced to W and Cu phases at temperatures over $700^{\circ}C$. The reduced W-Cu nanocomposite powder exhibits excellent sinterability, and the ultrafine W-Cu composite can be obtained by the Cu liquid phase sintering process.

Influence of milling atmosphere on thermoelectric properties of p-type Bi-Sb-Te based alloys by mechanical alloying

  • Yoon, Suk-min;Nagarjuna, Cheenepalli;Shin, Dong-won;Lee, Chul-hee;Madavali, Babu;Hong, Soon-jik;Lee, Kap-ho
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.357-363
    • /
    • 2017
  • In this study, Bi-Sb-Te thermoelectric materials are produced by mechanical alloying (MA) and spark plasma sintering (SPS). To examine the influence of the milling atmosphere on the microstructure and thermo-electric (TE) properties, a p-type Bi-Sb-Te composite powder is mechanically alloyed in the presence of argon and air atmospheres. The oxygen content increases to 55% when the powder is milled in the air atmosphere, compared with argon. All grains are similar in size and uniformly, distributed in both atmospheric sintered samples. The Seebeck coefficient is higher, while the electrical conductivity is lower in the MA (Air) sample due to a low carrier concentration compared to the MA (Ar) sintered sample. The maximum figure of merit (ZT) is 0.91 and 0.82 at 350 K for the MA (Ar) and MA (Air) sintered samples, respectively. The slight enhancement in the ZT value is due to the decrease in the oxygen content during the MA (Ar) process. Moreover, the combination of mechanical alloying and SPS process shows a higher hardness and density values for the sintered samples.

Effect of Powder Mixing Process on the Characteristics of Hybrid Structure Tungsten Powders with Nano-Micro Size (나노-마이크로 크기 하이브리드 구조 텅스텐 분말특성에 미치는 분말혼합 공정의 영향)

  • Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.384-388
    • /
    • 2017
  • The effect of the mixing method on the characteristics of hybrid-structure W powder with nano and micro sizes is investigated. Fine $WO_3$ powders with sizes of ${\sim}0.6{\mu}m$, prepared by ball milling for 10 h, are mixed with pure W powder with sizes of $12{\mu}m$ by various mixing process. In the case of simple mixing with ball-milled $WO_3$ and micro sized W powders, $WO_3$ particles are locally present in the form of agglomerates in the surface of large W powders, but in the case of ball milling, a relatively uniform distribution of $WO_3$ particles is exhibited. The microstructural observation reveals that the ball milled $WO_3$ powder, heat-treated at $750^{\circ}C$ for 1 h in a hydrogen atmosphere, is fine W particles of ~200 nm or less. The powder mixture prepared by simple mixing and hydrogen reduction exhibits the formation of coarse W particles with agglomeration of the micro sized W powder on the surface. Conversely, in the powder mixture fabricated by ball milling and hydrogen reduction, a uniform distribution of fine W particles forming nano-micro sized hybrid structure is observed.

Fabrication of CNT dispersed Cu matrix composites by wet mixing and spark plasma sintering process (습식 교반 및 방전 플라즈마 소결 공정에 의한 CNT 분산 Cu 복합재료 제조)

  • Cho, Seungchan;Jo, Ilguk;Lee, Sang-Bok;Lee, Sang-Kwan;Choi, Moonhee;Park, Jehong;Kwon, Hansang;Kim, Yangdo
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.158-164
    • /
    • 2018
  • Multi-walled carbon nanotube (MWCNT)-copper (Cu) composites are successfully fabricated by a combination of a binder-free wet mixing and spark plasma sintering (SPS) process. The SPS is performed under various conditions to investigate optimized processing conditions for minimizing the structural defects of CNTs and densifying the MWCNT-Cu composites. The electrical conductivities of MWCNT-Cu composites are slightly increased for compositions containing up to 1 vol.% CNT and remain above the value for sintered Cu up to 2 vol.% CNT. Uniformly dispersed CNTs in the Cu matrix with clean interfaces between the treated MWCNT and Cu leading to effective electrical transfer from the treated MWCNT to the Cu is believed to be the origin of the improved electrical conductivity of the treated MWCNT-Cu composites. The results indicate the possibility of exploiting CNTs as a contributing reinforcement phase for improving the electrical conductivity and mechanical properties in the Cu matrix composites.

Synthesis and analysis CdSe/ZnS quantum dot with a Core/shell Continuous Synthesis System Using a Microfluidic Reactor (미세유체반응기를 이용한 core/shell 연속 합성 시스템을 이용한 CdSe/ZnS 양자점 합성 및 분석)

  • Hong, Myung Hwan;Joo, So Young;Kang, Lee-Seung;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • Core/shell CdSe/ZnS quantum dots (QDs) are synthesized by a microfluidic reactor-assisted continuous reactor system. Photoluminescence and absorbance of synthesized CdSe/ZnS core/shell QDs are investigated by fluorescence spectrophotometry and online UV-Vis spectrometry. Three reaction conditions, namely; the shell coating reaction temperature, the shell coating reaction time, and the ZnS/CdSe precursor volume ratio, are combined in the synthesis process. The quantum yield of the synthesized CdSe QDs is determined for each condition. CdSe/ZnS QDs with a higher quantum yield are obtained compared to the discontinuous microfluidic reactor synthesis system. The maximum quantum efficiency is 98.3% when the reaction temperature, reaction time, and ZnS/CdSe ratio are $270^{\circ}C$, 10 s, and 0.05, respectively. Obtained results indicate that a continuous synthesis of the Core/shell CdSe/ZnS QDs with a high quantum efficiency could be achieved by isolating the reaction from the external environment.