• Title/Summary/Keyword: 앱 평점

Search Result 13, Processing Time 0.023 seconds

BEHIND CHICKEN RATINGS: An Exploratory Analysis of Yogiyo Reviews Through Text Mining (치킨 리뷰의 이면: 텍스트 마이닝을 통한 리뷰의 탐색적 분석을 중심으로)

  • Kim, Jungyeom;Choi, Eunsol;Yoon, Soohyun;Lee, Youbeen;Kim, Dongwhan
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.30-40
    • /
    • 2021
  • Ratings and reviews, despite their growing influence on restaurants' sales and reputation, entail a few limitations due to the burgeoning of reviews and inaccuracies in rating systems. This study explores the texts in reviews and ratings of a delivery application and discovers ways to elevate review credibility and usefulness. Through a text mining method, we concluded that the delivery application 'Yogiyo' has (1) a five-star oriented rating dispersion, (2) a strong positive correlation between rating factors (taste, quantity, and delivery) and (3) distinct part of speech and morpheme proportions depending on review polarity. We created a chicken-specialized negative word dictionary under four main topics and 20 sub-topic classifications after extracting a total of 367 negative words. We provide insights on how the research on delivery app reviews should progress, centered on fried chicken reviews.

Relationship Analysis between Malware and Sybil for Android Apps Recommender System (안드로이드 앱 추천 시스템을 위한 Sybil공격과 Malware의 관계 분석)

  • Oh, Hayoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1235-1241
    • /
    • 2016
  • Personalized App recommendation system is recently famous since the number of various apps that can be used in smart phones that increases exponentially. However, the site users using google play site with malwares have experienced severe damages of privacy exposure and extortion as well as a simple damage of satisfaction descent at the same time. In addition, Sybil attack (Sybil) manipulating the score (rating) of each app with falmay also present because of the social networks development. Up until now, the sybil detection studies and malicious apps studies have been conducted independently. But it is important to determine finally the existence of intelligent attack with Sybil and malware simultaneously when we consider the intelligent attack types in real-time. Therefore, in this paper we experimentally evaluate the relationship between malware and sybils based on real cralwed dataset of goodlplay. Through the extensive evaluations, the correlation between malware and sybils is low for malware providers to hide themselves from Anti-Virus (AV).

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.259-266
    • /
    • 2023
  • In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.

Trend Analysis of Malwares in Social Information Based Android Market (소셜 기반 안드로이드 마켓에서 악성 앱 경향성 분석)

  • Oh, Hayoung;Goo, EunHee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1491-1498
    • /
    • 2017
  • As the use of smartphones and the launch of various apps have increased rapidly, the number of malicious apps has also increased, and the damage is continuing. The Google Market where Android apps are registered is inevitably present at the same time as normal apps and malicious apps even though there are regulations for app registration. Especially, as social networks are activated, users are connected with social networks, and the ratings, downloads and awareness information are reflected in the number of downloaded apps. As a result, when users choose their apps by simply reflecting ratings, popularity, popular comments, and highly-categorized apps, malicious app downloads can sometimes cause significant harm. Therefore, this study first analyzed the tendency of malicious apps by directly crawling and analyzing long-term social information in the currently active Android market.

Effects of Mobile App Updates on Mobile App Rankings: Free Apps in the App Store (모바일 앱의 업데이트가 모바일 앱의 순위에 미치는 영향: 앱 스토어의 무료 앱을 대상으로)

  • Jo, Huiseung;Im, Kun Shin
    • Information Systems Review
    • /
    • v.18 no.1
    • /
    • pp.125-140
    • /
    • 2016
  • Mobile applications (apps) play a significant role in the proliferation of smartphones. According to statistics from Apple, 100 million apps were downloaded in 2008. Since then, the number of cumulative app downloads have increased exponentially. By October 2014, 85 billion apps had been downloaded worldwide. Many studies have attempted to determine the factors that drive app downloads. However, unlike previous studies, we examine the effects of app updates on app rankings. To achieve this goal, we collected data on rankings (gross rankings and category rankings), update contents, reviewer ratings, and number of reviews on apps listed in the App Store. We then categorized app updates into functionality, reliability, and convenience updates following the buying hierarchy model. We found that functionality updates had a positive effect on app gross ranking whereas reliability updates had a positive effect on category ranking. Our study is the first to explore the effects of update content on app ranking. Moreover, our study provides a practical implication for mobile app developers, who should consider app updates in their product development strategy.

Development of an Android Application Recommendation System based on the Latest User Reviews (최신 사용자 평가를 바탕으로 한 안드로이드 애플리케이션 추천 시스템의 개발)

  • Cheon, Junseok;Woo, Gyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.503-505
    • /
    • 2017
  • 최근 길거리나 지하철 등에서 스마트폰을 사용하는 사람을 쉽게 찾을 수 있다. 이러한 스마트폰은 대부분 iOS나 안드로이드 운영체제를 사용한다. 따라서 스마트폰에서 사용하는 앱들은 앱스토어나 구글 플레이에서 받아서 사용한다. 하지만, 필요한 앱을 검색해도 비슷한 앱이 많아서 어떤 것을 사용해야 할지 망설이는 경우가 발생한다. 사용자 평점을 기준으로 앱을 선택한다 하더라도 총 누적 평점이기 때문에 현재 버전의 앱이 실제로 어떨지는 알기 어렵다. 이 논문에서는 사용자가 검색한 단어를 바탕으로 구글 플레이 상의 앱을 추천해주는 시스템을 소개한다. 이 시스템은 검색된 최신 버전의 앱에 대한 평점과 사용자 평가를 종합 및 분석하여 사용자에게 추천한다.

POMDP Based Trustworthy Android App Recommendation Services (부분적 관찰정보기반 견고한 안드로이드 앱 추천 기법)

  • Oh, Hayoung;Goo, EunHee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1499-1506
    • /
    • 2017
  • The use of smartphones and the launch of various apps have increased exponentially, and malicious apps have also increased. Existing app recommendation systems have been limited to operate based on static information analysis such as ratings, comments, and popularity categories of other users who are online. In this paper, we first propose a robust app recommendation system that realistically uses dynamic information of apps actually used in smartphone and considers static information and dynamic information at the same time. In other words, this paper proposes a robust Android app recommendation system by partially reflecting the time of the app, the frequency of use of the app, the interaction between the app and the app, and the number of contact with the Android kernel. As a result of the performance evaluation, the proposed method proved to be a robust and efficient app recommendation system.

Problem Identification and Improvement Measures through Government24 App User Review Analysis: Insights through Topic Model (정부24 앱 사용자 리뷰 분석을 통한 문제 파악 및 개선방안: 토픽 모델을 통한 통찰)

  • MuMoungCho Han;Mijin Noh;YangSok Kim
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.27-35
    • /
    • 2023
  • Fourth Industrial Revolution and COVID-19 pandemic have boosted the use of Government 24 app for public service complaints in the era of non-face-to-face interactions. there has been a growing influx of complaints and improvement demands from users of public apps. Furthermore, systematic management of public apps is deemed necessary. The aim of this study is to analyze the grievances of Government 24 app users, understand the current dissatisfaction among citizens, and propose potential improvements. Data were collected from the Google Play Store from May 2, 2013, to June 30, 2023, comprising a total of 6,344 records. Among these, 1,199 records with a rating of 1 and at least one 'thumbs-up' were used for topic modeling analysis. The analysis revealed seven topics: 'Issues with certificate issuance,' 'Website functionality and UI problems,' 'User ID-related issues,' 'Update problems,' 'Government employee app management issues,' 'Budget wastage concerns ((It's not worth even a single star) or (It's a waste of taxpayers' money)),' and 'Password-related problems.' Furthermore, the overall trend of these topics showed an increase until 2021, a slight decrease in 2022, but a resurgence in 2023, underscoring the urgency of updates and management. We hope that the results of this study will contribute to the development and management of public apps that satisfy citizens in the future.

Propose of Efficient u-smart tourist information system in Ubiquitous Environment (유비쿼터스 환경에서 효율적인 u-스마트 관광정보시스템 제안)

  • Sun, Su-Kyun
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.407-413
    • /
    • 2013
  • For Ubiquitous service, there are some method researched. To IT convergence study tourism the convergence of IT and tourism in recent years has emerged as a discipline in the future. Tourist information is information about tourism products as tourists tourism decision-making needed to say. Information presented information anytime, anywhere, using a contact-type media, mobile and efficient tourist information content and generate content using Smart App store to the database is needed. This paper, by taking advantage of the Smart App Places to generate content and Smart Things to query, modify, search, tourism information, tourism policy and tourists can be analyzed, and the average inclination and these efficient tourism information content and that can be utilizedmodels are proposed. This u-Smart is a tourist information system. Build the biggest advantages of the meta-meta-model in real time by utilizing Smart App disposition of existing tourism information and tourist and tourism rating database. Helps to generate patterned by digital tourism policy tourism information content.

Study on the utilization of Travel site Matjip (Reputable Restaurant) search application(APP) using Smart Phone (스마트폰을 이용한 여행지 맛집 검색 앱 활용에 관한 연구)

  • Yoon, KyungBae;Song, Seung-Heon
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.437-443
    • /
    • 2013
  • This thesis enhanced the degree of utilization of smart phone through carrying out the application/app. which search and visit matjip (reputable restaurant) at the travel sites using smart phones. When we search matjip (reputable restaurant) using materialized application, we can select the best matjip (reputable restaurant) we want. Especially, this application evaluates individual restaurants through the level of utilization and satisfaction by consumer including appropriate menus, the style and design of the restaurant, reasonableness of prices, service of restaurant employees and sanitation management by region and registered the information input to DB in advance while classifying based on the evaluation scores to keep track for individual tastes. And individuals can record their personal memories to input columns. On top of that, information field for transportation is also designed to enhance the accessibility during travel, and in the future the application can be further utilized through the expansion of the DB through the input of famous tour sites and acquaintance's house information.