• Title/Summary/Keyword: 액체-기체비

Search Result 143, Processing Time 0.032 seconds

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

Fluid Inclusions in Amethyst from the Korea Amethyst Deposit, Uljin, Gyeongbuk (경북 울진 코리아 광상의 자수정에 대한 유체포유물 연구)

  • Lee, Mi-Lyoung;Yang, Kyoung-Hee;Lee, Ju-Youn;Kim, Gyo-Tea
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.207-216
    • /
    • 2009
  • Three distinct types of fluid inclusions in amethyst and quartz crystals are associated with metamorphic events in the Korea Amethyst deposit from Uljin-Gun, Gyeongbuk Province. The amethyst displays bimodal grain size distribution in fine-grained, strain-free equigranular quartz with coarse-grained quartz grains with kink bands and undulose extinction. Type I inclusions are liquid-rich and salinity is 0~7 wt% NaCl and the homogenization temperatures ($T_h$) $91{\sim}231^{\circ}C$ with eutectic temperatures ($T_e$) $-52{\sim}-20^{\circ}C$. Type II inclusions are vapor-rich (80~90 vol%). The salinity and $T_h$ ranges 3~6 wt% NaCl and $230{\sim}278^{\circ}C$, respectively with $T_e$ $-56{\sim}-23^{\circ}C$. Type III inclusions contain a daughter mineral other than NaCl. The salinity ranges 32~36 wt% NaCl and $T_h$ $210{\sim}271^{\circ}C$. The textural and fluid inclusion evidences suggest that the host Buncheon granite gneiss and Amethyst pegmatite experienced dynamic recrystallization and the studied fluid inclusions are metamorphic in origin. The metamorphic event possibly occurred at higher temperature than $271{\sim}278^{\circ}C$. The amethysts from Uljin Korea Amethyst can be distinguished from the synthetic amethyst on basis of the distinctive two and three-phases fluid inclusions. Furthermore, it is noticeable that Korea amethyst do not contain NaCl-bearing and $CO_2$-rich fluid inclusions unlike those compared to those from Eonyang and Samcheonpo deposits related to unmetamorphosed granitic rocks.

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

Nonlinear Modeling and Application of PI Control on Pre-cooling Session of a Carbon Dioxide Storage Tank at Normal Temperature and Pressure (상온 상압의 이산화탄소 저장용 탱크를 위한 예냉과정의 비선형 모델링 및 비례-적분 제어 적용)

  • Lim, Yu Kyung;Lee, Seok Goo;Dan, Seungkyu;Ko, Min Su;Lee, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.574-580
    • /
    • 2014
  • Storage tanks of Carbon dioxide ($CO_2$) carriers utilized for the purpose of carbon capture and storage (CCS) into subsea strata have to undergo a pre-cooling session before beginning to load cryogenic liquid cargos in order to prevent physical and thermal deterioration of tanks which may result from cryogenic $CO_2$ contacting tank walls directly. In this study we propose dynamic model to calculate the tank inflow of $CO_2$ gas injected for precooling process and its dynamic simulation results under proportional-integral control algorithm. We selected two cases in which each of them had one controlled variable (CV) as either the tank pressure or the tank temperature and discussed the results of that decision-making on the pre-cooling process. As a result we demonstrated that the controlling instability arising from nonlinearity and singularity of the mathematical model could be avoided by choosing tank pressure as CV instead of tank temperature.

Progress of Nanofiltration Hollow Fiber Membrane (NF용 중공사 분리막의 발전)

  • Jang, Hanna;Kim, Seongjoong;Lee, Yongtaek;Lee, Kew-Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.456-470
    • /
    • 2013
  • Hollow-fiber membranes, is one of the new technologies that is growing rapidly in the past few decades. In addition, separation membranes using polymer materials, have attracted attentions in various fields including gas separation, fuel cells, water treatment, wastewater treatment, and organic separation. Nanofiltration (NF) membranes having the separation characteristics in the intermediate range between ultrafiltration and reverse osmosis (RO) membranes for liquid separation, with relatively low investment cost and operating pressure lower than that of RO membranes, have high permeance and rejection performance of multivalent ions as well as organic compounds of molecular weight between $200{\sim}1000gmol^{-1}$. In this paper, we would like to review the research trends on the various structure control and characterization of NF hollow fiber membranes with respect to materials and the methods of preparation (phase inversion method and interfacial polymerization method). Currently, most of NF membranes have been manufactured by plate and frame types or spiral wound types. But hollow fiber types have delayed in commercial products, because of the weak strength when to produce on the basis of the existing materials, therefore the development of new materials or improvement of existing materials will be needed. If improving manufacturing technology is available, hollow fiber types will replace spiral wound types and gradually show a higher market share.

A Comparative Study on the Lipid components of Barley and Malt -II. Composition of Polar Lipids- (보리와 맥아(麥芽)의 지방질(脂肪質) 성분(成分)에 관한 비교(比較) 연구 -제(第)2보(報) : 극성지질(極性脂質)의 조성(組成)-)

  • Lee, Sang-Young;Kim, Jong-Sung;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.37-42
    • /
    • 1981
  • Polar lipids of the total lipid extracted from 4 representative varieties of barley grown in Korea and their corresponding malt were studied. The average content of glycolipids and phospholipids in barley were 8.9 and 17.3% and their average content of malt were 12.3 and 19.2%, respectively. Among the glycoliplds of the barley, digalactosyl diglycerides and monogalactosyl diglycerides were the major components, and the malts showed somewhat lower amounts of those components. Steryl glycosides and cerebrosides were the minor components of the glycolipids, and malts of the barley showed somewhat increased amounts of those components. Phosphatidyl cholines, lysophosphatidyl cholines, diphosphatidyl glycerols, and phosphatidyl ethanolamines were the major components of the phospholipids for the barley and represented 85 to 90% of the total phospholipids. The malts had lower amounts of phosphatidyl cholines and the lyso analog, and higher amounts of phosphatidyl ethnolamines and diphosphatidyl glycerols. The fatty acid composition in the glycolipids and phospholipids were similar to the pattern in those of the neutral lipids. But glycolipids and phospholipids fractions contained a higher percent of linoleic and palmitic acid than other lipid fractions, respectively.

  • PDF

The Study of Fast X-ray Fluorescence Analysis Using a SSQ Program (SSQ 프로그램을 이용한 빠른 X-선형광분석법 고찰)

  • Park, Yong Joon
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.112-119
    • /
    • 1998
  • A Siemens SemiQuant (SSQ) 3000 program, a precalibrated 'standardless' analytical program handling up to 90 elements, was evaluated for the fast analysis of various types of reference materials using a wavelength dispersive X-ray spectrometer. Various types of standard reference materials such as metal discs, metal chips, and geological materials in powder form were analysed and it took 23 minutes of measuring time for 75 elements. Measurements of geological reference materials using different sampling methods were carried out and their data were interactively evaluated. The analysis of materials of a known matrix concentration such as stainless steels provided higher precision value compared to totally unknown samples. The analyses of materials prepared as pressed pellets or fused glass beads provided higher precision values compared to the measurement of loose powders with a foil on the sample surface and helium operation, though their sampling procedures were more complicate and took more time. Since very light elements such as boron, carbon, and oxygen have a strong influence on the matrix effects and also on the calculation of effective matrix corrections, the rhodium Compton check was applied to verify the reliability of the defined light element concentrations of light matrix materials and the defined major sample compounds. Failure of defining correct matrix resulted in an unoptimized matrix correction and therefore in the wrong calculation of the element concentration.

  • PDF

The Study on the Wave Pressure of the Tsunami Acting on the Permeable Structure (투과성구조물에 작용하는 지진해일파압에 관한 연구)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.79-92
    • /
    • 2011
  • In this study, wave pressure of short-period gravity waves and tsunami acting on the upright section of the horizontal-slit type caisson placed on the impermeable or permeable seabed, which is a well-known permeable breakwater with a good wave controlling ability, are investigated via numerical simulations. Further, the permeable seabed was modeled as the porous media with porosity of 0.4. Using the numerical results, the effects of the seabed conditions on the wave pressure on the front wall and inside wall of the chamber have been studied. In the numerical simulations, short-period gravity waves and tsunami(solitary wave or bore) with the same amplitude to the gravity wave are considered. A numerical wave tank is used, which is able to consider a gas-liquid two-phase flow in the same calculation zone. Numerical results show that the wave pressure of the tsunami was 3~5 times higher than the short-period gravity waves acting on the front wall and it was 2~4 times higher than the short-period gravity waves acting on the inner wall.

Steam Gasification of Coal and Petroleum Coke in a Thermobalance and a Fluidized Bed Reactor (열천칭과 유동층반응기에서 석탄과 Petroleum Coke의 수증기 가스화반응)

  • Ji, Keunho;Song, Byungho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1015-1020
    • /
    • 2012
  • Lignite of low rank coal and petroleum coke of high sulfur content can be high potential energy sources for coal gasification process because of their plentiful supply. The steam gasification of lignite, anthracite, and pet coke has been carried out in both an atmospheric thermobalance reactor and a lab-scale fludized bed reactor (0.02 m i.d. ${\times}$ 0.6 m height). The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (0.15~0.95 atm) on the gasification rate and on the heating value of product gas have been investigated. The modified volumetric reaction model was applied to the experimental data to describe the behavior of carbon conversion, and to evaluate kinetic parameters of char gasification. The results shows that higher temperature bring more hydrogen in the product syngas, and thus increased gas heating value. The feed rate of steam is needed to be optimized because an excess steam input would lower the gasification temperature which results in a degradation of fuel quality. The rank of calorific value of the product gas was anthracite > lignite > pet coke. Their obtained calorific value at $900^{\circ}C$ with 95% steam feed were 10.0 > 6.9 > 5.7 $MJ/m^3$. This study indicates that lignite and pet coke has a potential in fuel gas production.

Results of Cold Flow Test and Design of Injectors for Oxidizer-rich Preburner (산화제 과잉 예연소기용 분사기 설계 및 수류 시험 결과)

  • So, YoonSeok;Woo, SeongPil;Lee, Kwang-Jin;Yu, ByungIl;Kim, Jinhyung;Cho, Hwangrae;Bang, Jeongsuk;Han, YeongMin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.52-57
    • /
    • 2018
  • This paper presents the design and cold flow test results of oxidizer-rich preburner injectors for a 9 tonf-class staged combustion engine cycle. Three types of coaxial swirl injectors were designed, and 12 injectors were designed for each type. The diameters of the fuel tangential holes are identical. The diameters of the oxidizer tangential holes were varied to investigate the influence of combustion in the oxidizer-rich preburner according to the momentum ratio of the gas oxidizer generated from combustion in the injector chamber and liquid oxidizer through the cooling channel. It will be verified through a powerpack and combustion test using an oxidizer-rich preburner. In the cold flow test, the fuel flow rate and oxidizer tangential hole flow rate reached the target value based on the designed differential pressure.