• Title/Summary/Keyword: 액체엔진개발

Search Result 322, Processing Time 0.019 seconds

Development Trends of Liquid Methane Rocket Engine and Implications (액체로켓 메탄엔진 개발동향 및 시사점)

  • Lim, Byoungjik;Kim, Cheulwoong;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung;Ahn, Kyubok;Namkoung, Hyuck-Joon;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.119-143
    • /
    • 2021
  • Selecting liquid methane as fuel is a prevailing trend for recent rocket engine developments around the world, triggered by its affordability, reusability, storability for deep space exploration, and prospect for in-situ resource utilization. Given years of time required for acquiring a new rocket engine, a national-level R&D program to develop a methane engine is highly desirable at the earliest opportunity in order to catch up with this worldwide trend towards reusing launch vehicles for competitiveness and mission flexibility. In light of the monumental cost associated with development, fabrication, and testing of a booster stage engine, it is strategically a prudent choice to start with a low-thrust engine and build up space application cases.

A study on the relation between the first stage liquid rocket engine and the launch vehicle capability (1단용 액체로켓엔진과 발사체 운송 능력과의 관련성 연구)

  • Moon, In-Sang;Moon, Il-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.134-140
    • /
    • 2007
  • Since the successful launch of Sputnik 1, a rocket engine was evolved rapidly. The first artificial satellite Sputnik has only 182 lb mass with a size of a basket ball, a modern artificial satellite is over 10 tons. As the size and the mass of an artificial satellite increases, the stronger launch vehicles are required. However, the story is different in the field of the rocket engine development. In the early to mid age of the space race, rocket engine study was focused on the stronger and bigger engine development, but from the 80's the tide has changed. A rocket engine must be strong and also economic. This trend was accelerated from when a rocket launch was used commercially. In this study, a capability of the launch vehicle and engine was investigated to provide a reference for a liquid rocket engine development plan.

  • PDF

Development and Validation of Spray Model of Coaxial Swirl Injector Installed in Liquid Propellant Rocket Engine (액체로켓엔진에 장착되는 스월 분사기의 분무 모델 개발 및 검증)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.37-50
    • /
    • 2007
  • This study investigated the characteristics of spray generated by a liquid coaxial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis considered long and short wave was introduced in liquid sheet breakup. Through the hydrodynamic analysis the initial liquid sheet thickness spray angle and injection velocity were predicted. To evaluate the effect of turbulence model standard $k-{\varepsilon}$ and RNC $k-{\varepsilon}$ model were applied to numerical calculation and it was known that RNC $k-{\varepsilon}$ model was more applicable to predict spray characteristics. On the basis of this evaluation validation of the developed model was performed with swirl injector installed in LPRE and the predicted results of breakup length, spray angle, and SMD agreed well with experiments qualitatively and quantitatively.

Introduction to Systems Analysis Technique for a Liquid Rocket Engine (액체로켓엔진 시스템 해석 기술 소개)

  • Cho, Won Kook;Park, Soon Young;Kim, Chul Woong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.70-75
    • /
    • 2014
  • Programs of energy balance, mode analysis and transient analysis for a liquid rocket engine have been introduced. The analysis methods have been verified through comparison between the present results, and the results of the other program and experimental data. An energy balance analysis is used for engine system design at the early development phase. A mode analysis is used for decision of engine operation conditions and test conditions, and studying deviation of an engine performance. A transient analysis can predict a propellant flow rate, thrust, impulse at transient phase. It is essential to establish a startup/shut down sequence. The analysis programs will be used to develop the engines of KSLV-II.

Development of BLDC Motor Driven Cryogenic Thrust Control Valve for Liquid Propellant Rocket Engine (BLDC 모터로 구동되는 액체 추진제 로켓엔진용 극저온 추력제어밸브 개발)

  • Jung, Tae-Kyu;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1026-1030
    • /
    • 2010
  • This paper summarizes the activities performed for the development of a BLDC(Brushless Direct Current) motor driven cryogenic thrust control valve with application to KSLV-II rocket engine. The developed thrust control valve can modulate the flow rate of liquid oxygen under cryogenic temperature of 90K and high pressure of 113.2 bar with the help of electro-mechanical actuator driven by a BLDC motor. This valve can be applied to an engine combustion test after minor change because all development certification test have been performed successfully.

A Correction Method for Operating Mode Analysis of Gas Generator Cycle Liquid Propellant Rocket Engine (가스발생기 사이클 액체로켓엔진작동 모드 해석의 보정 방법)

  • Nam, Chang-Ho;Moon, Yoonwan;Park, Soon Young;Chung, Enhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.104-110
    • /
    • 2018
  • Operating mode analysis of a liquid propellant rocket engine(LRE) is a crucial tool through the development of an engine. The operating mode analysis of an engine based on a collection of the acceptance tests of components shows discrepancies when compared to the test results. We propose a correction method for performance parameters to develop an engine analysis model for the gas generator cycle of an LRE. In order to simulate engine behavior, the performance parameters for the analysis model are tuned based on the test results of the 75tf engine of KSLV-II.

Preliminary design on the thrust measurement system for vertical firing test stand of the liquid rocket engine combustion chamber (액체로켓엔진 연소기 수직형 연소시험설비의 추력측정시스템 기본설계)

  • Kim, Ji-Hoon;Kim, Seung-Han;Lee, Kwang-Jin;Han, Yeoung-Min;Park, Bong-Kyo;Hu, Sang-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.574-577
    • /
    • 2012
  • Thrust measuring is one of the crucial factor to decide the performance of a liquid rocket engine when the engine development test, especially for the combustion chamber, is implemented. Calculating the thrust from a combustion pressure is used when direct measuring the thrust is impossible, but direct measuring the thrust is necessary and various methods for doing it more precisely should be considered. This paper introduces the preliminary design concept about the new thrust measurement system for the vertical firing test stand, which is introduced domestically for the first time, of a liquid rocket engine combustion chamber.

  • PDF

Transient Analysis of Liquid Rocket Engine around the Nominal Thrust Level (정상상태 부근에서의 액체로켓 엔진의 과도해석)

  • Choi Hwan-Seok;Seol Woo-Seok;Park Soon-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.68-76
    • /
    • 2004
  • It is essential to develop a transient engine system analysis model for turbopump fed type liquid rocket engine development, especially for deriving engine system test number and conditions. In this study, we proposed a mathematical model of turbopump fed type liquid rocket engine, and inspected transient mode changes around the nominal thrust level of a rocket engine according to variations of trust control valve's opening ratio. To verify the results, we solved the same problem with AnaSyn software from Russia, and concluded that the transient code showed the similar results within $2\%$ with AnaSyn.

  • PDF

Stability Rating of Liquid Propellant Rocket Engine (액체 로켓엔진의 연소 안정성 평가)

  • 손채훈;김영목
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.73-77
    • /
    • 2003
  • Stability rating of KSR-III rocket engine is conducted based on stability rating tests in the course of development of KSR-III rocket engine. Rocket engine is approved to have combustion stabilization ability when it can suppress the external perturbation or pressure oscillation with finite amplitude and recover the original stable combustion. Rocket engine in flight nay be perturbed with unexpectedly large amplitude and thus a designer should not only assure combustion stabilization ability of the engine but also quantify the stabilization capacity. For this, several quantitative parameters and their evaluation are introduced. To verify dynamic stability of KSR-III rocket engine, five stability rating tests have been conducted. Based on these test results, such parameters are quantified and thereby, the stabilization capacity of KSR-III rocket engine is evaluated.

  • PDF

Application of Computational Fluid Dynamics to Development of Combustion Devices for Liquid-Propellant Rocket Engines (액체추진제 로켓 엔진 연소장치 개발에 있어서의 전산유체역학 응용)

  • Joh, Miok;Kim, Seong-Ku;Han, Sang Hoon;Choi, Hwan Seok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.150-159
    • /
    • 2014
  • This study provides a brief introduction to application of the computational fluid dynamics to domestic development of combustion devices for liquid-propellant rocket engines. Multi-dimensional flow analysis can provide information on the flow uniformity and pressure loss inside the propellent manifold, from which the design selection can be performed during the conceptual design phase. Multi-disciplinary performance analysis of the thurst chamber can also provide key information on performance-related design issues such as fuel film cooling and thermal barrier coating conditions. Further efforts should be made to develop numerical models to resolve the mixing and combustion characteristics of LOX/kerosene near the injection face plate.