• Title/Summary/Keyword: 액체약

Search Result 428, Processing Time 0.062 seconds

Experimental Study of Liquid Oxygen Sub-cooling by Helium Injection (헬륨분사를 통한 액체산소 과냉각에 관한 실험적 연구)

  • Kwon Oh-Sung;Cho Nam-Kyung;Chung Yong-Gahp;Ha Seong-Up;Lee Joong-Youp;Kim Hyun-Joong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.179-182
    • /
    • 2005
  • Test of liquid oxygen sub-cooling by helium injection, which is one of the method of temperature conditioning of cryogenic propellant in liquid propulsion rocket, is performed. The sub-cooling effect at different He injection flow rate with the same initial liquid oxygen mass is compared. Test results showed liquid oxygen temperature decrease of $5\sim6^{\circ}C$ under test condition. And the required time for cooling is inversely proportional to He injection flow rate.

  • PDF

Operation Techniques of Liquid Rocket Engine Combustor Ground Firing Test Facility (액체로켓엔진 연소기 지상연소시험설비 운영관리 기술)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Moon, Il-Yoon;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.157-162
    • /
    • 2006
  • A Liquid Rocket Engine(LRE) ground firing test facility was built in Korea Aerospace Research Institute(KARI) in 2001 to develop the LRE for the first Korean liquid rocket, KSR-III. Around 170 tests were conducted since its establishment until recently by September 2006, and in the meantime, a considerable improvements were made in the capability. This paper describes the outline, conducted tests and operation techniques which have been accumulated through the operation of KARI LRE ground firing test facility.

  • PDF

Operation and Maintenance Techniques for Liquid Rocket Combustor Ground Firing Test Facility (액체로켓 연소기 지상연소시험설비 운영 및 관리 기술)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Moon, Il-Yoon;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • A ground firing test facility for Liquid Rocket Engine(LRE) combustor was built in Korea Aerospace Research Institute(KARI) in 2001 to support the development of the first Korean LRE for the KSR-III. About 170 tests were conducted up to date since its establishment and in the meantime a considerable improvements were made in the facility capability. This paper describes the outline, conducted tests and operation techniques which have been acquired through the operation of the test facility.

Absorption of [Cn-min] with Addition of Various Dilutes (희석제 혼합에 따른 [Cn-min]의 흡수특성)

  • Baek, Geun-Ho;You, Seung-Han;Lee, Jeung-Hyuk;Cha, Wang-Seog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.284-287
    • /
    • 2010
  • 본 연구논문에서는 주요 온실가스인 이산화탄소의 제거를 목적으로 이온성 액체를 실험실규모로 제조한 후 기-액 흡수평형장치를 이용하여 이산화탄소의 용해도 및 재생특성 그리고 희석제첨가에 따른 영향을 조사하였다. 이산화탄소 용해도는 흡수평형압력 25bar조건에서 두 이온성 액체 모두 0.6 mole $CO_2$/mole ILs의 비슷한 흡수력을 보였다. 재생성능의 경우 탈착 전 후의 흡수력 차가 약 7%로 양호한 재생력을 나타냈다. 점도 감소를 위하여 sulfone 희석제를 첨가하여 조사한 결과 흡수력에서 약 15%가량 감소함을 알 수 있었다.

  • PDF

Measurement of $^{222}Rn$ in ground water with low-level Liquid Scintillation Counter and pulse shape analysis (저준위 액체섬광계수기와 파형분석법을 이용한 지하수중의 $^{222}Rn$ 측정)

  • Jo Su-Yeong;Yun Yun-Yeol;Lee Gil-Yong;Kim Yong-Je
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.319-323
    • /
    • 2006
  • 파형분석(PSA) 기능과 백그라운드 낮고 계측효율이 높은 장점을 가지고 있는 저준위 액체섬광계수기를 이용하여 지하수중의 $^{222}Rn$ 측정을 위한 최적 분석조건을 확립하였다. 라돈분석을 위해 섬광용액 HiSafe 3 12 ml를 사용하여 물시료 8 ml 내 $^{222}Rn$ 을 측정하였다. 라돈은 딸핵종과의 방사평형을 위해 3시간동안 방치한 후 계측하였다. 최적 파형분석 (PSA) 준위는 100 이었다. $^{222}Rn$의 계측효율은 $^{226}Ra$ 표준시료를 동일 조건으로 제조한 후 약 20일 이상 방치한 다음 측정하여 결정하였으며 측정효율은 약 $91.6{\pm}3.6%$ 이었다. 동일 시료의 라돈 추출실험 재현성은 2 % 이내이었다. 계측시간 10시간을 기준으로 바탕값은 0.035 cpm 이었고 300분 계측시 검출하한값은 0.11 Bq/L 이었다.

  • PDF

Production of Reducing Sugar from Macroalgae Saccharina japonica Using Ionic Liquid Catalyst (이온성 액체 촉매를 이용한 해조류 다시마로부터 환원당 생산)

  • Park, Don-Hee;Jeong, Gwi-Taek
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.106-110
    • /
    • 2013
  • In this work, we investigated 20 kinds of ionic liquids as catalyst during the hydrolysis of Saccharina japonica. Three kinds of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate, n-butyl-4-methylpyridinium tetrafluoroborate, and n-methylmorpholine [$HSO_4$], are selected, and then investigated the effect of reaction temperature, catalyst amount and reaction time. The hydrolysis of S. japonica was increased by the increasing of reaction temperature and ionic liquid amount. Also, the hydrolysis presented the linear increase by the increasing of reaction time. After 90 min of reaction, the concentrations of reducing sugar of 1-ethyl-3-methylimidazolium tetrafluoroborate, n-butyl-4-methylpyridinium tetrafluoroborate, and n-methylmorpholine [$HSO_4$] are reached to 6.2 g/L, 6.4 g/L and 6.0 g/L, respectively. As an overall result, we obtained the possibility of hydrolysis of marine biomass using ionic liquids.

Spray Characteristics of Supersonic Liquid Jet by a Nozzle Geometry of Miniature High-Pressure Injection System (축소형 초고압 분사 시스템의 노즐 형상에 따른 초음속 액체 제트 분무 특성에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.177-180
    • /
    • 2010
  • Two-stage light gas gun, sorted with Ballistic Range System, is used to research spray characteristics of supersonic liquid jets. When high pressure tube was pressurized to the 135 bar, diaphragm films which composed with OHP film are ruptured. Expansion gases accelerate a projectile approximately 250 m/s at the exit of pump tube. And accelerated projectile collides with liquid storage part and liquid jets were injected into supersonic conditions. Supersonic liquid jets show the multiple jets and generate shockwave at the forward region of jets. Supersonic liquid jets of speed and shockwave angle have different value at each case. Supersonic liquid jets with minimum velocities are injected with M=1.53 at the geometry condition of L/d=23.8.

  • PDF

Absorption characteristic of carbon dioxide in Ionic Liquids based sulfite anion in the pre-combustion condition (연소 전 조건에서 음이온이 Sulfite계인 이온성 액체의 CO2 흡수 특성)

  • Baek, Geun Ho;Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.763-769
    • /
    • 2021
  • In this study, ionic liquids were synthesized to remove carbon dioxide (CO2) on a laboratory scale. The vapor-liquid absorption equilibrium device (VLE) was used to investigate the carbon dioxide absorption capacity. In the regeneration study, the absorption capacity after regeneration was reduced by approximately 7% for all ionic liquids, in which the anion was sulfite-based, showing excellent regeneration. Ethyl sulfite showed the highest absorption capacity of CO2 among the ionic liquids based on the sulfite anion. In particular, the absorption capacity of [beim] ethyl sulfite was 1.1 mol CO2 / mol IL at an absorption equilibrium pressure of 22 bar. In the regeneration study, the absorption capacity after regeneration was reduced by approximately 7% for all ionic liquids, in which the anion was sulfite-based, from which regeneration is outstanding. After the absorption experiment, the viscosity of the sample tended to decrease by approximately 8% compared to that before the absorption experiment. On the other hand, the absorbent was synthesized in the first step. Moreover, the raw material used is also inexpensive and has excellent reproducibility and highly stable absorbent capacity.

High-Pressure Solubility of Carbon Dioxide in 1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid (1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide 이온성 액체에 대한 이산화탄소의 고압 용해도)

  • Nam, Sang-Kyu;Lee, Byung-Chul
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.79-91
    • /
    • 2014
  • Solubility data of carbon dioxide ($CO_2$) in 1-butyl-3-methylpiperidinium bis(trifluoromethylsulfonyl)imide ($[bmpip][Tf_2N]$) ionic liquid are presented at pressures up to about 30 MPa and at temperatures between 303 K and 343 K. As far as we know, the data on the $CO_2$ solubility in the $[bmpip][Tf_2N]$ ionic liquid have never been reported in the literature by other investigators. The solubilities of $CO_2$ were determined by measuring the bubble point or cloud point pressures of the $CO_2+[bmpip][Tf_2N]$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the cation composing the ionic liquid on the $CO_2$ solubility, the $CO_2$ solubilities in $[bmpip][Tf_2N]$ used in this study were compared with those in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ($[bmim]Tf_2N]$). As the equilibrium pressure increased, the $CO_2$ solubility in $[bmpip][Tf_2N]$ increased sharply. On the other hand, the $CO_2$ solubility decreased with increasing temperature. The mole fraction-based $CO_2$ solubilities were almost the same for both $[bmpip][Tf_2N]$ and $[bmim][Tf_2N]$, regardless of temperature and pressure. The phase equilibrium data for the $CO_2+[bmpip][Tf_2N]$ systems have been correlated using the Peng-Robinson equation of state.

A phase transformation model for burning surface in AP/HTPB propellant combustion (AP추진제의 연소면 형성 및 전파 모델링 연구)

  • Jung, Tae-Yong;Doh, Young-Dae;Yoo, Ji-Chang;Yoh, Jack Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • In the solid rocket propellant combustion, the dynamic phase change from solid to liquid to vapor occurs across the melt layer. During the surface burning, liquid and gas phases are mixed in the intermediate zone between the propellant and the flame to form micro scale bubbles. The known thickness of the melt layer is approximately 1 micron at $10^5$ Pa. In this paper, we present a model of the melt layer structure and the dynamic motion of the melt front derived from the classical phase field theory. The model results show that the melt layer grows and propagates uniformly according to exp(-1/$T_s$) with $T_s$ being the propellant surface temperature.