• Title/Summary/Keyword: 액체로켓(liquid rocket)

Search Result 824, Processing Time 0.025 seconds

Methodical Aspects of Experimental Improvement on Working Capacity of Liquid Rocket Engine (액체로켓엔진 시험-개선과정의 방법론)

  • Kim, Cheul-Woong;Bershadskiy, Vitaly A.;Kim, Sang-Heon;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • As a result of the study on a number of the works, published in Russia, the methodical aspects of experimental improvement on working capacity of LRE (Liquid Rocket Engine) are reviewed. In the article, on the basis of the experience of Russia and USA, the special features of experimental improvement on working capacity of LRE and the methods of its rational implementation formulated. The organizational and technical solutions of experimental improvement on working capacity of LRE for achieving the required level of the reliability and decreasing the material expenditures are presented in the article. These suggested solutions can be used for the development of LRE.

The characteristics in the developments of Liquid Rocket Engines in Russia (러시아의 액체로켓엔진 개발과정 및 전망)

  • Kim, Cheul-Woong;Park, Soon-Young;Cho, Won-Kook;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.737-738
    • /
    • 2010
  • This paper deals with the characteristics of the developments of liquid rocket engines in Russia. In 1960s the efforts to achieve the maximum pressure in combustion chamber and specific impulse by applying the closed cycle for liquid rocket engines were made. Lately the decreasing the cost for experimental improvement and expanding international cooperation have been in progress.

  • PDF

Effect of Thermal Barrier Coating and Film Cooling Condition on the Cooling Performance of Liquid-propellant Rocket Engine Combustor (액체로켓 엔진 연소기의 열차폐 코팅 및 막냉각 조건에 따른 냉각 성능 변화 해석)

  • Joh, Miok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.52-59
    • /
    • 2014
  • The effect of ceramic thermal barrier coating thickness on the cooling performance of a liquid-propellant rocket engine combustor has been investigated through combustion/cooling performance analysis whose results verified against measured data from hot-firing tests. Also have been confirmed the effects of film cooling amount near the face plate on the coolant temperature and on the thermal barrier coating surface temperature. Some important points to be considered for designing cooling schemes for regeneratively cooled rocket engine combustor have been drawn and reviewed from present study and further verification of the analysis tool should be performed in the future.

Characteristics of Hydrogen and Considerations as a Rocket Propellant (수소의 특성 및 로켓 추진제로서의 고려사항)

  • Lim, Ha-Young;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.23-26
    • /
    • 2009
  • General characteristics of hydrogen and the ratio change of the two forms of hydrogen(ortho-hydrogen and para-hydrogen) as a function of the temperature were introduced. The unique characteristics of hydrogen, such as a wide range of flammability limits, low minimum ignition energy, low maximum inverse temperature, and hydrogen embrittlement were introduced. The process of producing the liquid hydrogen using pre-cooling and expansion engine and ortho-para conversion using the catalyst were introduced. Finally, the characteristics and the considerations as a propellant for liquid rocket were reviewed.

  • PDF

Design and Evaluation of Volute Casings for a Liquid Rocket Turbopump (액체로켓 터보펌프 벌류트 케이징의 구조설계 및 시험)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.775-776
    • /
    • 2010
  • Volute casings for a liquid rocket turbopump are designed and evaluated in a structural point of view. After the design step volute casings are manufactured by metal casting process, and then they are subjected to burst test for verification. In the burst test strains at several points are measured and compared with predicted values.

  • PDF

Development of Cryogenic Oxygen Line Manufacturing Process for Liquid Rocket Engine (액체로켓엔진 극저온 산화제 배관 제작공정 개발)

  • Kim, Jin-Hyung;Cho, Hwang-Rae;Bang, Jeong-Suk;Rhee, Byung-Ho;Yoo, Jae-Han;Moon, Il-Yoon;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.62-65
    • /
    • 2011
  • 액체로켓엔진용 극저온 산화제 고압 배관 기술 개발을 위해 시제품을 제작하였다. 기술 개발 시제품은 체결용 플랜지, 직관, 곡관, 벨로우즈, 분기구로 구성하였다. 액체로켓엔진용 극저온 산화제 고압 배관은 터보펌프에서 토출된 고압의 극저온 산화제를 연소기로 공급하는 경로이므로 극저온, 고압의 작동환경에서 구조적 안정성을 가져야 한다. 따라서 본 제작공정 개발에서는 극저온을 고려한 구조해석을 수행하여 적합한 소재를 선정하였으며, 공정개발과 특수공정을 적용하여 시제품을 제작한 후 구조강도 시험을 수행하였다. 본 개발을 통해 액체로켓엔진에 적용되는 극저온 산화재 고압배관을 위한 기술적 기반과 소재 응용기술, 향후 고성능 대형 액체로켓엔진에 적용하기 위한 공정개발을 완료하였다.

  • PDF

Chung-nam National University's Status of Research on Technology of the Next Generation Rocket Engine System (충남대학교 차세대 로켓엔진 시스템 기술 연구 현황)

  • Jang, Jee-Hun;Jeon, Jun-Su;Kim, Tae-Woan;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.196-200
    • /
    • 2012
  • To acquire indigenous development abilities of a future space launcher, bi-propellant liquid rocket engines using environmentally clean propellants such as hydrogen peroxide and methane have been developed by Chungnam national university. The necessary development technologies for the future liquid rocket engines were defined and have been acquired step-by-step in advance by sub-scale liquid rocket engines. Core techniques of design/manufacture/experiments to develop a future prototype liquid rocket engine will be obtained by this study.

  • PDF

Analytic Considerations of Liquid Rocket Engine Thrust Chamber Design for the KSLV-II (한국형발사체 액체로켓엔진 연소기 설계의 해석적 고찰)

  • Choi, Hwan-Seok;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Seong-Ku
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.71-80
    • /
    • 2010
  • The KSLV-II(Korea Space Launch Vehicle-II) which being a successor of the KSLV-I is a space launch vehicle capable of delivering 1.5 ton-class satellite into a low earth orbit. The development of a 75 tonf-class liquid rocket engine(LRE) is planned on the basis of the technologies mastered through the preceded research of a 30 tonf-class LRE. The thrust chamber of the LRE is required to have higher combustion stability, structural integrity and thermal durability. This paper deals with the design requirements of the 75-tonf thrust chamber and a variety of technical considerations which have been conducted analytically in the course of the design for the realization of the requirements.

Pressure Drop Changes at Engine Fuel Inlet Filter according to Water Contents Management of KSLV-II Liquid Rocket Fuel (한국형발사체 액체로켓 연료의 수분관리에 따른 엔진 연료입구필터 차압의 변화)

  • Hwang, Changhwan;Kim, Inho;Park, Jaeyoung;Kim, Seonglyong;Yoo, Byungil;Cho, Namkyung;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.120-125
    • /
    • 2020
  • 75 tonf liquid rocket engine combustion test was performed at Naro space center Engine Combustion Test Facility for KSLV-II. A gradual pressure drop was observed during off-design combustion test turbopump inlet condition using cooled kerosene at 271 K. It was found that the water content inside kerosene could cause pressure drop at 40 ㎛ grade filter through the water contests analysis of kerosene, kerosene cooling test and dehydration of kerosene.

Experience Cases of Combustion Instability in Development of Thrust Chamber for Liquid Rocket Engine (액체로켓엔진 연소기 개발에서의 연소불안정 경험 사례)

  • Kim, Jonggyu;Kim, Hyeon-Jun;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.54-58
    • /
    • 2017
  • A combustion instability has been one of the most serious problems in the development of combustion devices including rocket engine and gas turbine. In particular, a high-frequency combustion instability generated by resonant coupling between combustion phenomena and acoustic oscillations within thrust chamber causes severe damage to the hardware. Because it is accompanied by high amplitude pressure oscillations and excessive heat flux to the chamber wall. Therefore, combustion instability is one of the difficult problems that must be resolved in developing liquid rocket engine. This paper describes the cases of combustion instability encounted during the development of thrust chamber for KSR-III and KSLV-II.

  • PDF