• Title/Summary/Keyword: 액적 분사

Search Result 182, Processing Time 0.025 seconds

The Effect of Tension and Drop Height on Contact Angle of Droplet on Flexible Substrate in Roll-to-Roll Systems (롤투롤 시스템에서 플렉시블 소재에 인가된 장력과 분사 높이가 액적 접촉각에 미치는 영향)

  • Kim, Dongguk;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • This study proposes a method for identifying correlations between tension and drop height for sessile droplets in a roll-to-roll processing system. The effect of tension and drop height on the contact angle of a sessile droplet is presented. Design of experiment (DOE) methodology and statistical analysis are used to define a correlation between the process parameters. The contact angle is decreased while increasing tension and drop height. The influence of the tension is less significant on the contact angle compared with the effect of the drop height. However, tension should be considered as a major parameter because it is not easy to fix with roll eccentricity and compensating speed of the driven roll. The results of this study show that the effect of tension on the contact angle of a sessile droplet is more important than drop height because the drop height is fixed when the process systems are determined.

An Experimental Study on the Drop Size of a Twin-Fluid Swirl Jet Nozzle (이유체 선회분사 노즐의 액적크기에 관한 실험적 연구)

  • Oh, J.H.;Kim, W.T.;Kang, S.J.;Rho, B.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.21-27
    • /
    • 1996
  • This experimental study was to investigate spray angles and drop sizes in an external mixed twin-fluid swirl jet nozzle. Twin-fluid swirl jet nozzle with swirlers designed four swirl angles such as $0^{\circ},\;22.5^{\circ},\;45^{\circ},\;64.2^{\circ}$ was employed. A PDA system was utilized for the measurement of drop size and mean velocity. Water and air were used as the working fluids in this experiment. The mass flow rate of water was fixed as 0.03 kg/min, and air flow rates were controlled to have the air/liquid mass ratio from 1.0 to 6.0. As a result, swirl angle controlled to spray angles and drop sizes. It was found that swirl angle was increased with spray angle and with decreased SMD. However, the effect of swirl angle was reduced at large air/liquid mass ratio(Mr=6.0).

  • PDF

A Numerical Study on Evaporation and Combustion of Liquid Spray (액체분무의 증발 및 연소에 관한 수치적 연구)

  • 정인철;이상용;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2073-2082
    • /
    • 1991
  • The vaporization and combustion of liquid spray in a cylindrical shape combustor was studied numerically. Mixture of liquid drops and air was assumed to be ejected from the center-hole and assisting air from the concentric annulus with swirling. Eulerian-Lagrangian scheme was adopted for the two phase calculation, and the interactions between the phases were considered with the PSIC model. Also adopted were the infinite conductivity model for drop vaporization, the equation of Arrhenius and the eddy break-up model for reaction rate, and the k-epsilon model for turbulence calculations. Gas flow patterns, drop trajectories and contours of temperature and mass fractions of the gas species were predicted with swirl number, drop diameter, and equivalence ratio taken as parameters. Calculations show that the vaporization and the consequent combustion efficiency enhance with the increase of the swirl number and/or with the decrease of drop size, and the higher maximum temperature is attained with the higher equivalence ratio.

Impinging Atomization of Intermittent Gasoline Sprays (간헐 가솔린 분무의 충돌에 의한 미립화 촉진)

  • 원영호;임치락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.174-181
    • /
    • 1998
  • Experimental and analytical studies are presented to characterize the break-up mechanism and atomization processes of the intermittent- impinging-type nozzle. Gasoline jets passing through the circular nozzle with the outlet diameter of 0.4mm and the injection duration of 10ms are impinged on each other. The impingement of fuel jets forms a thin liquid sheet, and the break-up of the liquid sheet produces liquid ligaments and droplets subsequently. The shape of liquid sheets was visualized at various impinging velocities and angles using the planer laser induced fluorescence (PLIF) technique. Based on the Kelvin-Helmholtz wave instability theory, the break-up length of liquid sheets and the droplet diameter are obtained by the theoretical analysis of the sheet disintegration. The mean diameter of droplet is also estimated analytically using the liquid sheet thickness at the edge and the wavelength of the fastest growing wave. The present results indicate that the theoretical results are favorably agreed with the experimental results. The size of droplets decreases after the impingement as the impinging angle or the injection pressure increase. The increment of the injection pressure is more effective than the increment of the impinging angle to reduce the size of droplets.

  • PDF

A Review on the Mixture Formation and Atomization Characteristics of Oxygenated Biodiesel Fuel (바이오디젤 연료의 혼합기 형성 및 미립화 증진 방안)

  • Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.183-192
    • /
    • 2014
  • In this work, the mixture formation and atomization characteristics of biodiesel fuel were reviewed under various test conditions for the optimization of compression-ignition engine fueled with biodiesel. To achieve these, the effect of nozzle caviting flow, group-hole nozzle geometry and injection strategies on the injection rate, spray evolution and atomization characteristics of biodiesel were studied by using spray characteristics measuring system. At the same time, the fuel heating system was installed to obtain the effect of fuel temperature on the biodiesel fuel atomization. It was revealed that cavitation in the nozzle orifice promoted the atomization performance of biodiesel. The group-hole nozzle geometry and split injection strategies couldn't improve it, however, the different orifice angles which were diverged and converged angle of a group-hole nozzle enhanced the biodiesel atomization. It was also observed that the increase of fuel temperature induced the quick evaporation of biodiesel fuel droplet.

Combustion Characteristics of the Slinger Combustor (슬링거 연소기의 연소특성)

  • 이강엽;이동훈;최성만;박정배;박영일;김형모;한영민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.173-178
    • /
    • 2003
  • The study was performed to understand combustion characteristics of the slinger combustor. Liquid fuel is discharged radially outwards through injection holes drilled in the high speed rotating shaft. We observed atomizing characteristics with variation of fuel nozzle rotating speed by using PDPA system. The mean drop diameter highly depends on fuel nozzle rotating speed. In KARI combustion test facility, Ignition and combustion tests were performed by using real scale combustor. In the test results, ignition and combustion efficiency were increased according to increasing fuel nozzle rotating speed. The measured radial temperature distribution at the combustor exit shows stable and fairly good distribution.

  • PDF

A Study on the Spray Behavior of Air-Assist Type Gasoline Fuel Injector in Intake Port (공기보조형 가솔린 연료분사기의 흡기포트내 연료분무 거동에 관한 연구)

  • Rho, Byung-Joon;Kang, Shin-Jae;Kim, Won-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.92-103
    • /
    • 1999
  • The fuel spray behavior in the intake port of an electronic control port irijection gasoline engine has a strong influence on engine performance, exhaust emission and fuel consumption. Thus, in this study, fuel spray behavior and flow characteristics of the air assist gasoline spray injected into a suction flow in a simulated rectangular intake port have boon investigated. Macro-behavior of spray characteristics was investigated by means of visualization and the measurements of SMD and velocity were made by PDPA. For analysis the flow field with droplets size, droplets are classified five droplets size groups. As a result, the normal distance of suction flow increasing, the relatively large droplets distribution and SMD increase because small droplets easily follow suction flow. Near impinging wail, after impinging against the wall, secondary atomized small droplets of D < $30{\mu}m$ bound from the wall. And the increasement of suction flow progress to the large droplets of D > $100{\mu}m$ distribution. Therefore, SMD are apparently increased near impinging wall, Z/d = 9.0.

The Flow Characteristics of Fuel Droplets between the Twin Spray for 4-hole Gasoline Injectors (4공 가솔린 분사기의 2중 분무 사이에서 연료 액적들의 유동특성)

  • Kim, Won-Tae;Kang, Shin-Jae;Rho, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.484-495
    • /
    • 2003
  • This study investigates the flow characteristics of fuel droplets between twin spray for the 4-hole injector used a 4-valve gasoline engine. The injectors for this study were the three types of 4-hole gasoline injector in which orifice diameter was 0.24mm. The spray behavior of twin spray was investigated by means of visualization employed stroboscope. A PDPA system was employed to simultaneously measure the size and velocity of fuel droplets. The 3 dimensional mean velocities. droplet size distributions, SMD and joint probability density function of velocity and droplet size are analyzed at the center of the spray and the center region of twin spray. As a result, the configurations of injector exit such as orifice interval and length of outlet, are very important factors that affect the flow characteristics of fuel droplets at the center region of twin spray.

Effect of Injection Pressure on Atomization Characteristics of Fuel Spray in High-Pressure Gasoline Injector (가솔린 인젝터의 연료 분무 미립화 특성에 미치는 분사 압력의 영향)

  • Lee, Chang-Sik;Choi, Soo-Chon;Kim, Min-Kyu;Kwon, Sang-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.555-560
    • /
    • 2000
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDl engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

A Study on Spray Behavior of DME-LPG Blended Fuels in a Common-rail Injection System (커먼레일 분사 시스템에서 DME-LPG 혼합연료의 분무거동에 관한 연구)

  • Kim, W.I.;Woo, S.C.;Lee, C.S.;Lee, K.H.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • This study is to investigate the spray behavior of DME-LPG blended fuels in common rail injection system for diesel engines. The visualization experiment was performed to analyze the macroscopic spray behavior of test fuels. In addition, the experiment using BOS(Background Oriented Schlieren) method is performed to compare liquid phase and gas phase. The test fuels are injected in high pressure chamber. The ambient pressure of high pressure chamber was formed by nitrogen gas. Spray tip penetration, spray cone angle and spray area were measured using high speed camera. SMD(Sauter Mean Diameter) and spray particle velocity were measured using the PDPA(Phase Doppler Particle Analyzer) system to analyze the microscopic properties of test fuels. The results of this experiment showed that spray tip penetration, spray cone angle and spray area of DME-LPG fuels are similar to those of DME fuel. When compared to results of experiment using BOS, significant differences of spray tip penetrations, spray cone angle and spray area are showed because of gas phase. The results of experiment using BOS method showed higher values. SMD of DME-LPG blended fuels is smaller than that of DME fuel. Velocity of DME-LPG blended fuels is faster than that of DME fuel.