• 제목/요약/키워드: 액셜 피스톤 펌프

검색결과 29건 처리시간 0.025초

크리깅 메타모델에 기반한 다목적최적설계 전략과 액셜 피스톤 펌프 설계에의 응용 (Multiobjective optimization strategy based on kriging metamodel and its application to design of axial piston pumps)

  • 정종현;백석흠;서용권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.893-904
    • /
    • 2013
  • NSGA-II와 함께 크리깅 메타모델기반 다목적최적설계 전략을 3차원 CFD 시뮬레이션을 통해 액셜 피스톤 펌프의 밸브 플레이트 형상을 최적화하는데 적용하였다. 펌프의 압력 변동을 저감하고 수력 효율을 최대화하기 위한 최적설계 과정은 두 단계, 즉 (1) 밸브 플레이트 상의 6개 형상 설계 변수를 선정하고 각 설계변수의 변화에 따른 CFD 해석을 수행하며, (2) CFD 데이터를 이용한 NSGA-II에 기반한 다목적최적설계 접근방식으로 최소 맥동 압력과 펌프 효율 설계에 대해 파레토 프론트를 평가하는 것으로 구성된다. 이들 결과로부터 최소 맥동 압력을 가지며 액셜 피스톤 펌프의 목표 효율에 도달하는 최적 절충해를 선택할 수 있었다.

액셜 피스톤 펌프내 유압유 유동에 대한 수치해석적 연구 (Numerical Study on Hydraulic Fluid Flows Within Axial Piston Pumps)

  • 정종현;김종기;서용권
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.129-136
    • /
    • 2010
  • 액셜 피스톤 펌프는 유압시스템의 동력원으로 널리 사용되고 있으나, 펌프내의 유체유동에 관한 연구는 유체 압축성, 고속회전, 유량변화와 복잡한 형상 때문에 1차원 해석으로 수행되어졌다. 본 연구의 목표는 3차원 수치해석 방법을 이용하여 액셜 피스톤 펌프내의 유압유체 유동과 토출압 맥동의 생성과정을 이해하는 것이다. 시뮬레이션 모델의 수렴성 향상 및 강건성 확보를 위하여 밸브 플레이트 주위의 격자계는 육면체 격자로 구성하였다. 또한, 수치해석시 필요한 오일의 밀도와 압력의 관계는 실험식을 적용하였다. 3차원 수치해석의 결과는 실험결과와 비교적 잘 일치하였다.

피스톤 펌핑 위상이 텐덤형 사판식 액셜 피스톤 펌프의 진동, 소음에 미치는 영향에 관한 연구(2) (A Study on Effects of Piston Pumping Phase on Vibration and Noises of Tandem Swash Plate Type Axial Piston Pump(2))

  • 박성환;이진걸
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.31-39
    • /
    • 1999
  • Previous researches and experiments have already verified that the primary noise source of high pressure tandem axial thpe piston pump is fluid-borne noise from the process of oil distribution between the kidney-shaped port and valve plate. So, many researchers have improved pressure gradients and reduced sound levels by applying pre-compression and pre-decompression metering grooves to valve plate. In practice however, the sound level of th high pressure tandem axial type piston pump is still undesirable. This paper testified the effect of pumping phase of the piston on vibration and noise of th high pressure tandem axial type piston pump on the best of theoretical research in $this^(1)$. Therefore considering the pumping phase of the piston when assembling the tandem axial type piston pump, it is possible to reduce 1.5~2[dB]of sound level.

  • PDF

피스톤 펌핑 위상이 텐덤형 사판식 액셜 피스톤 펌프의 진동 ${\cdot}$ 소음에 미치는 영향에 관한 연구(1) (A Study on Effects of Piston Pumping Phase on Vibration and Noises of Tandem Swash Plate Type Axial Piston Pump(1))

  • 박성환;이진걸
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.74-82
    • /
    • 1999
  • To meet the needs of the hydraulic excavator of large capacity, tandem axial type piston pump which is high pressure and high speed have been developed. But inevitably we can not help facing the problem of noise at that time. In order to reduce the noise of this pump, many researchers have been studying the problem of oil distribution manner. But they are not interested in the symmetric structure of tandem type pump. So, focusing on the symmetric structure of tandem type pump, this paper analyzed unbalanced force developed in the pump chamber and verified the effect of the pumping phase of the piston on vibration and noise of the tandem axial type piston pump theoretically.

  • PDF

사판식 액셜피스톤 펌프-레귤레이터계의 선형화해석에 의한 유압제어특성 고찰 (A Study on Hydraulic Control Characteristics of a Swashplate Type Axial Piston Pump-Regulator System by Linearization Analysis)

  • 조승호;김원수
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2535-2542
    • /
    • 2000
  • The regulator system has been modeled and combined to a swashplate type axial piston pump. Linear approximation has been performed for nonlinear coefficient terms of an axial piston pump-regulator model without significantly affecting accuracy. Based on the mathematical model of an axial piston pump-regulator system, a couple of characteristic curves of negative flow control and horsepower control are drawn, which show a good correlation with those of experimental results. So the simplified axial piston pump-regulator model in this paper is expected to be utilized not only for the design and analysis of hydraulic circuit of excavator but also for prevention of engine overload.

유압용 액셜 피스톤 펌프의 유량맥동 계측에 관한 연구 (A Study on the Measurement of Delivery Flow Ripple Generated by Hydraulic Axial Piston Pumps)

  • 이상기
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.35-43
    • /
    • 1999
  • The paper describes an approach for measuring delivery flow ripple generated by oil hydraulic axial piston pumps. In order to reduce pressure ripple which cause to undesirable noise. vibration and fatigue in hydraulic systems it is indispensible measure a delivery flow ripple from pumps. Since the flow ripple measurement of flow pumps is independent of the dynamic characteristics of the connected hydraulic circuit the measurement of flow ripple is most suitable for pump fluid-borne noise rating. The measurement of flow ripple with high frequencies from axial piston pumps is made by applying the remote instantaneous flow rate measurement method which is based on the dynamic characteristics between pressure and flow rate in hydraulic pipeline. The measured flow ripple waveforms are influenced by the configuration of V-shaped triangular relief groove in the valve plate. It can be seen that the appropriate relief groove in valve plate reduces the pressure and flow ripple amplitude and frequency spectrum for high harmonics.

  • PDF

사판식 가변 용량형 액셜 피스톤 펌프의 일정출력 레귤레이터 특성 시뮬레이션 (Simulation on Characteristics of Constant Power Regulator Systems in Variable Displacement Axial Piston Pump)

  • 이지민;박성환;박용호;이현희
    • 동력기계공학회지
    • /
    • 제15권2호
    • /
    • pp.5-12
    • /
    • 2011
  • In this study, modeling and numerical simulations has been performed to investigate performance characteristics of constant power regulator system for swash plate type axial piston pump. The commercial numerical simulation software, AMESim was applied for analyzing the dynamic behavior of constant power regulator system of swash plate axial piston pump. The validity of simulation model of constant power regulator system is verified by comparing simulation results with experiments. Also, the behavior of main components of constant power regulator system such as spool, sleeve and counterbalance piston is investigated using the results of computer simulation.

유압 액셜 피스톤 펌프의 실린더 내부 압력 변동이 소음에 미치는 영향 (Effect of the Cylinder Pressure Fluctuation on the Noise of Oil Hydraulic Axial Piston Pumps)

  • 정재연;송규근;오석형;김종기;곽재련
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.737-740
    • /
    • 2002
  • Pressure fluctuation in the cylinder is one of the major sources on noise emission in oil hydraulic piston pumps. This paper reports an experimental study of pressure fluctuation characteristics in the cylinder of oil hydraulic piston pumps. We measured pressure fluctuation at BDC with delivery pressure, rotational speed. Because the pre-compression and the V-grooves in the valve plate is known of noise reduction, we investigated also the effect of pre-compression and V-grooves at the ends of the kidney ports with four types valve plates. We found that the pre-compression and the V-grooves in valve plate could reduce the noise of oil hydraulic piston pumps.

  • PDF

위상간섭을 이용한 사축식 액셜 피스톤 펌프의 압력맥동 감소에 대한 연구 (A Study on the Reduction in Pressure Ripples for a Bent-Axis Piston Pump by a Phase Interference)

  • 김경훈;최명진;이규원;장주섭
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.103-110
    • /
    • 2004
  • Pressure ripples yield noise and vibration in hydraulic pipelines, which are inevitably generated by a fluctuation of flow rate in the pump mechanism, and such noise and vibration deteriorate the stability and accuracy of hydraulic systems. To reduce the pressure ripples, accumulator and hydraulic attenuator are normally used. In this study, parallel pipeline with a bent-axis piston pump is introduced to a hydraulic pipe system as a method for reducing the pressure ripples and using the transfer matrix method, the dynamic characteristics of the pipe system are analysed and compared with experimental results. The results show that the phase interference using parallel pipeline with a bent-axis piston pump is effective to reduce the pressure ripples in the hydraulic pipelines.