• 제목/요약/키워드: 앙상블 예측

검색결과 328건 처리시간 0.022초

공간분포모델을 활용한 사료작물 이탈리안 라이그라스(Lolium multiflorum L.)의 재배적지 변동예측연구 (A Study on the Prediction of Suitability Change of Forage Crop Italian Ryegrass (Lolium multiflorum L.) using Spatial Distribution Model)

  • 김현애;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제16권2호
    • /
    • pp.103-113
    • /
    • 2014
  • 우리나라에서의 사료작물 생산면적이 제한적이기 때문에 미래의 기후조건에서 최적 재배 가능 지역을 중심으로 이탈리안 라이그라스와 같은 사료작물의 생산체계를 설계하는 것이 필요하다. 특히, 한반도를 대상으로 이탈리안 라이그라스의 재배 가능지역을 파악하는 것이 미래를 대비한 정책 결정에 도움을 줄 수 있다. 이번 연구에서는 기후자료를 기반으로 작물의 재배적합도를 예측하는 EcoCrop 모델을 사용하여 현재(1950~2000), 2020년대(2010~2039), 2050년대(2040~2069), 2080년대(2070~2099)의 이탈리안 라이그라스의 재배 가능지역을 분석하였다. 또한, 전구 기후모델인 CCCMA, CSIRO, UKMO-HadCM3, UKMO-HadGEM1, 그리고 NCAR 모델 등으로부터 얻어진 규모축소 기후자료를 활용한 앙상블 예측기법을 재배적합도 예측에 적용하여 미래 기후변화 조건에서의 불확실도를 낮추는 것을 시도하였다. 2050년대까지 이탈리안 라이그라스의 재배적합도는 남한과 북한 모두 크게 상승할 것으로 예측되었다. 예를 들어, 현재 기후조건에서 충청북도와 강원도에서 평균적인 재배적합도가 76.75와 44.77으로 낮게 예측되었지만 2020년대에 각각 16.2% 및 46.1% 증가하여 2080년대에는 모든 행정구역에서 평균적인 재배적합도가 90이상으로 나타날 것으로 예측되었다. 반면, 2080년대에 16개의 시 도 중 11개의 지역에서 재배적합도가 감소할 것으로 예측되었다. 북한의 경우 현재 기후조건에서 평균적인 재배적합도는 28.40으로 평균적인 재배적합도가 낮았다. 그러나 기후변화가 진행되면서 재배적합도가 크게 증가하여 2080년대에는 14개 행정구역 중 10곳에서 평균적인 재배적합도가 80 이상일 것으로 예측되었다. 특히 나선, 신의주 및 개성 인근 지역의 재배적합도가 크게 증가할 것으로 예측되어 이를 중심으로 수출을 위한 사료 생산단지 및 축산단지 조성이 가능할 것으로 예상되었다. 현재, 내한성 향상을 중심으로 이탈리안 라이그라스의 새로운 품종들이 개발 및 보급되고 있어 이러한 신품종을 대상으로 한 이모작 가능지를 구분하기 위해 품종별로 최적화된 모수를 활용한 재배적합도 예측지도를 작성연구가 연구가 필요할 것으로 사료되었다.

위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정 (Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models)

  • 최현영;강유진;임정호;신민소;박서희;김상민
    • 대한원격탐사학회지
    • /
    • 제36권5_3호
    • /
    • pp.1053-1066
    • /
    • 2020
  • 이산화황(SO2)은 대기 중 화학 반응을 통해 2차 대기오염물질을 생성하는 전구체로, 주로 산업활동이나 주거 및 교통 활동 등을 통해 배출된다. 장기간 노출 시 호흡기 질환이나 심혈관 질환 등을 유발하여 인체 건강에 부정적인 영향을 미칠 수 있기 때문에 이에 대한 지속적인 모니터링이 필요하다. 우리나라에서는 SO2에 대해 관측소 기반의 모니터링이 수행되고 있으나 이는 공간적으로 연속적인 정보를 제공하는 데에 한계가 있다. 따라서, 본 연구에서는 위성자료와 수치모델 자료를 융합하여 일별 13시를 타겟으로 하는 1 km의 고해상도로 공간적으로 연속적인 SO2 지상농도를 산출하였다. 2015년 1월부터 2019년 4월까지의 기간 동안 남한 지역에 대하여 스태킹 앙상블 기법을 이용하여 SO2 지상농도 추정 모델을 개발하였다. 스태킹 앙상블 기법이란 여러가지 기계학습 기법을 두 단계로 쌓는 방식으로 융합하여 단일 모델 대비 더 향상된 성능을 도출하는 방법이다. 본 연구에서는 베이스 모델로는 RF (Random Forest)와 XGB (eXtreme Gradient BOOSTing) 기법이, 메타 모델로는 MLR (Multiple Linear Regression) 기법이 사용되었다. 구축된 모델의 교차검증 결과 메타 모델은 상관계수(R) = 0.69와 root-mean-squared-error(RMSE) = 0.0032 ppm의 결과를 보였으며 이는 베이스 모델의 평균 대비 약 25% 향상된 안정성을 보였다. 또한 모델 구축에 사용되지 않은 기간에 대한 예측 검증을 수행하여 모델의 일반화 가능성을 평가하였다. 구축된 모델을 이용하여 남한 지역의 SO2 지상농도 공간분포를 분석한 결과 일반적인 계절성과 배출원의 변화를 잘 반영하는 패턴을 보임을 확인하였다.

강우자료의 불확실성을 고려한 강우 유출 모형의 적용 (Application of Rainfall Runoff Model with Rainfall Uncertainty)

  • 이효상;전민우;발린 다니엘라;로드 미하엘
    • 한국수자원학회논문집
    • /
    • 제42권10호
    • /
    • pp.773-783
    • /
    • 2009
  • 강우유출모형의 입력 자료로 사용되는 강우 관측 자료의 불확실성이 유량예측에 미치는 영향을 분석하기 위하여 모형변수 검정의 불확실성 연구에서 사용하는 GLUE (Generalized Likelihood Uncertainty Estimation)방법을 입력 자료 부분으로 확장하여 적용 하였다. 독일의 Weida 유역의 강우 관측 자료를 바탕으로 구조적 및 비구조적인 불확실성 부분을 각각 구조적인 오차 수정 과정과 DUE (Data Uncertainty Engine)을 통하여 강우자료를 구성하였다. 이를 유역의 수문학적 작용을 고려하기 위해 선정한 집중형 강우유출모형, PDM (Probability Distribution Model)에 MC (Monte Carlo)와 GLUE 방법을 활용하여 적용하였다. MC검정변수들의 검정 후 반응 표면(Posterior response surface)을 검토하고 GLUE 의 반응검정 모형변수(Behavioural model parameter set)를 선택, 간략한 GLUE 유량곡선들을 계산하였다. 계산된 GLUE 유량곡선들을 모두 합하여 앙상블 유량을 산정하고, 이 유량의 90 분위를 강우량자료 및 모형변수 검정의 불확실성을 고려한 신뢰구간으로 제시하였다. PDM 모형의 결과는 유량곡선의 전구간에서 안정적인 모의 능력을 보여주고 있으나, 첨두유량 부분이 적게 산정되는 문제점을 보이고 있다. 본 연구에서 상대적으로 적은 수의 강우 시나리오 및 반응검정 모형변수의 적용이라는 한계에도 불구하고, GLUE 방법을 강우관측자료의 불확실성 부분으로 확장하여 강우자료 및 변수 검정의 불확실성을 고려한 모의된 유량예측의 신뢰구간의 적용가능성을 보여주고 있다.

SSP 시나리오에 따른 국내 용재수종의 서식지 적합도 평가 (Assessing habitat suitability for timber species in South Korea under SSP scenarios)

  • 안현권;임철희
    • 환경생물
    • /
    • 제40권4호
    • /
    • pp.567-578
    • /
    • 2022
  • 본 연구는 국내 주요 용재수종인 잣나무와 삼나무, 편백에 대한 종 분포 예측 모델의 결과를 앙상블하여 기후 시나리오에 따라 현재, 근미래, 먼미래의 서식 적합지를 예측하였고 잣나무와 삼나무, 편백의 기후변화 시나리오별 분포 적합지를 분석하였다. 특히, 잣나무를 삼나무와 편백이 대체할 수 있는지 평가하였다. 기준연도(현재) 잣나무의 매우 적합한 서식지는 전국의 약 13.87%를 차지하지만 SSP5-8.5 하의 먼미래에서는 약 0.11%까지 낮아진다. 삼나무의 경우 기준연도의 서식 적합지는 약 7.08%이며 SSP5-8.5하의 먼미래에서는 약 18.21%까지 증가한다. 편백의 경우 기준연도의 서식 적합지는 약 19.32%이며 SSP5-8.5 하의 먼미래에서는 약 90.93%까지 차지하는 것으로 예측되었다. 전국적으로 조림하던 잣나무는 기후변화의 영향으로 서식처가 점차 북상하여 우리나라에서 적합한 서식처가 크게 감소하였으므로 21세기 중반 이후에는 국내에서 용재수종으로 조림하기에는 부적합하며 높은 수준의 서식 적합도를 갖는 편백이나 삼나무로 대체될 필요가 있다고 전망된다. 특히, 편백은 대부분의 영역에서 잣나무를 대체 가능하며, 삼나무의 경우 남해안과 중부지방 일부분을 대체할 수 있다고 평가되었다. 결론적으로 미래에는 조림하는 용재수종의 변화가 생길 것이며 다양한 수종을 대상으로 한 연구를 통해 기후변화에 대응하는 방안이 마련되기를 기대한다.

기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증 (Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration)

  • 김세현;김현미;계준경;이승우
    • 대기
    • /
    • 제25권1호
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

S2S 멀티 모델 앙상블을 이용한 북극 해빙 면적의 예측성 (Predictability of the Arctic Sea Ice Extent from S2S Multi Model Ensemble)

  • 박진경;강현석;현유경
    • 대기
    • /
    • 제28권1호
    • /
    • pp.15-24
    • /
    • 2018
  • Sea ice plays an important role in modulating surface conditions at high and mid-latitudes. It reacts rapidly to climate change, therefore, it is a good indicator for capturing these changes from the Arctic climate. While many models have been used to study the predictability of climate variables, their performance in predicting sea ice was not well assessed. This study examines the predictability of the Arctic sea ice extent from ensemble prediction systems. The analysis is focused on verification of predictability in each model compared to the observation and prediction in particular, on lead time in Sub-seasonal to Seasonal (S2S) scales. The S2S database now provides quasi-real time ensemble forecasts and hindcasts up to about 60 days from 11 centers: BoM, CMA, ECCC, ECMWF, HMCR, ISAC-CNR, JMA, KMA, Meteo France, NCEP and UKMO. For multi model comparison, only models coupled with sea ice model were selected. Predictability is quantified by the climatology, bias, trends and correlation skill score computed from hindcasts over the period 1999 to 2009. Most of models are able to reproduce characteristics of the sea ice, but they have bias with seasonal dependence and lead time. All models show decreasing sea ice extent trends with a maximum magnitude in warm season. The Arctic sea ice extent can be skillfully predicted up 6 weeks ahead in S2S scales. But trend-independent skill is small and statistically significant for lead time over 6 weeks only in summer.

미세먼지, 악취 농도 예측을 위한 앙상블 방법 (Ensemble Method for Predicting Particulate Matter and Odor Intensity)

  • 이종영;최명진;주영인;양재경
    • 산업경영시스템학회지
    • /
    • 제42권4호
    • /
    • pp.203-210
    • /
    • 2019
  • Recently, a number of researchers have produced research and reports in order to forecast more exactly air quality such as particulate matter and odor. However, such research mainly focuses on the atmospheric diffusion models that have been used for the air quality prediction in environmental engineering area. Even though it has various merits, it has some limitation in that it uses very limited spatial attributes such as geographical attributes. Thus, we propose the new approach to forecast an air quality using a deep learning based ensemble model combining temporal and spatial predictor. The temporal predictor employs the RNN LSTM and the spatial predictor is based on the geographically weighted regression model. The ensemble model also uses the RNN LSTM that combines two models with stacking structure. The ensemble model is capable of inferring the air quality of the areas without air quality monitoring station, and even forecasting future air quality. We installed the IoT sensors measuring PM2.5, PM10, H2S, NH3, VOC at the 8 stations in Jeonju in order to gather air quality data. The numerical results showed that our new model has very exact prediction capability with comparison to the real measured data. It implies that the spatial attributes should be considered to more exact air quality prediction.

지역 기후 앙상블 예측을 활용한 한반도 풍력 에너지의 시·공간적 변동성 연구 (Variability of Wind Energy in Korea Using Regional Climate Model Ensemble Projection)

  • 김유미;김연희;김나윤;임윤진;김백조
    • 대기
    • /
    • 제26권3호
    • /
    • pp.373-386
    • /
    • 2016
  • The future variability of Wind Energy Density (WED) over the Korean Peninsula under RCP climate change scenario is projected using ensemble analysis. As for the projection of the future WED, changes between the historical period (1981~2005) and the future projection (2021~2050) are examined by analyzing annual and seasonal mean, and Coefficient of Variation (CV) of WED. The annual mean of WED in the future is expected to decrease compared to the past ones in RCP 4.5 and RCP 8.5 respectively. However, the CV is expected to increase in RCP 8.5. WEDs in spring and summer are expected to increase in both scenarios RCP 4.5 and RCP 8.5. In particular, it is predicted that the variation of CV for WED in winter is larger than other seasons. The time series of WED for three major wind farms in Korea exhibit a decrease trend over the future period (2021~2050) in Gochang for autumn, in Daegwanryeong for spring, and in Jeju for autumn. Through analyses of the relationship between changes in wind energy and pressure gradients, the fact that changes in pressure gradients would affect changes in WED is identified. Our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.

원전 증기발생기 세관 결함 크기 예측을 위한 Bagging 신경회로망에 관한 연구 (A Study on Bagging Neural Network for Predicting Defect Size of Steam Generator Tube in Nuclear Power Plant)

  • 김경진;조남훈
    • 비파괴검사학회지
    • /
    • 제30권4호
    • /
    • pp.302-310
    • /
    • 2010
  • 본 논문에서는 원자력 발전소 증기발생기 세관에 발생할 수 있는 결함의 크기측정에 사용되는 Bagging 신경회로망에 대한 연구를 수행하였다. Bagging은 부트스트랩(bootstrap) 샘플링에 기반을 둔 추정기 앙상블을 생성하는 방법이다. 증기발생기 세관의 결함 크기측정을 위하여 다양한 폭과 깊이를 갖는 4가지 결함패턴의 eddy current testing 신호를 생성하였다. 그 다음, 단일 신경회로망(single neural network; SNN)과 Bagging 신경회로망(Bagging neural network; BNN)을 구성하여 각 결함의 폭과 깊이를 추정하였다. SNN과 BNN 추정성능은 최대오차를 이용해서 측정하였다. 실험결과, 결함 깊이 추정시의 SNN과 BNN 최대오차는 0.117mm와 0.089mm 이었다. 또한, 결함 폭 추정 시에는 SNN과 BNN 최대오차는 0.494mm와 0.306mm 이었다. 이러한 실험결과는 BNN 추정성능이 SNN 추정성능보다 우수하다는 것을 보여준다.

미국 금리 스프레드를 이용한 한국 금리 스프레드 예측 모델에 관한 연구 : SVR-앙상블(RNN, LSTM, GRU) 모델 기반 (A Study on the Korean Interest Rate Spread Prediction Model Using the US Interest Rate Spread : SVR-Ensemble (RNN, LSTM, GRU) Model based)

  • 정순호;김영후;송명진;정윤재;고성석
    • 산업경영시스템학회지
    • /
    • 제43권3호
    • /
    • pp.1-9
    • /
    • 2020
  • Interest rate spreads indicate the conditions of the economy and serve as an indicator of the recession. The purpose of this study is to predict Korea's interest rate spreads using US data with long-term continuity. To this end, 27 US economic data were used, and the entire data was reduced to 5 dimensions through principal component analysis to build a dataset necessary for prediction. In the prediction model of this study, three RNN models (BasicRNN, LSTM, and GRU) predict the US interest rate spread and use the predicted results in the SVR ensemble model to predict the Korean interest rate spread. The SVR ensemble model predicted Korea's interest rate spread as RMSE 0.0658, which showed more accurate predictive power than the general ensemble model predicted as RMSE 0.0905, and showed excellent performance in terms of tendency to respond to fluctuations. In addition, improved prediction performance was confirmed through period division according to policy changes. This study presented a new way to predict interest rates and yielded better results. We predict that if you use refined data that represents the global economic situation through follow-up studies, you will be able to show higher interest rate predictions and predict economic conditions in Korea as well as other countries.