DOI QR코드

DOI QR Code

Predictability of the Arctic Sea Ice Extent from S2S Multi Model Ensemble

S2S 멀티 모델 앙상블을 이용한 북극 해빙 면적의 예측성

  • 박진경 (국립기상과학원 지구시스템연구과) ;
  • 강현석 (국립기상과학원 지구시스템연구과) ;
  • 현유경 (국립기상과학원 지구시스템연구과) ;
  • Received : 2017.10.31
  • Accepted : 2018.02.08
  • Published : 2018.03.31

Abstract

Sea ice plays an important role in modulating surface conditions at high and mid-latitudes. It reacts rapidly to climate change, therefore, it is a good indicator for capturing these changes from the Arctic climate. While many models have been used to study the predictability of climate variables, their performance in predicting sea ice was not well assessed. This study examines the predictability of the Arctic sea ice extent from ensemble prediction systems. The analysis is focused on verification of predictability in each model compared to the observation and prediction in particular, on lead time in Sub-seasonal to Seasonal (S2S) scales. The S2S database now provides quasi-real time ensemble forecasts and hindcasts up to about 60 days from 11 centers: BoM, CMA, ECCC, ECMWF, HMCR, ISAC-CNR, JMA, KMA, Meteo France, NCEP and UKMO. For multi model comparison, only models coupled with sea ice model were selected. Predictability is quantified by the climatology, bias, trends and correlation skill score computed from hindcasts over the period 1999 to 2009. Most of models are able to reproduce characteristics of the sea ice, but they have bias with seasonal dependence and lead time. All models show decreasing sea ice extent trends with a maximum magnitude in warm season. The Arctic sea ice extent can be skillfully predicted up 6 weeks ahead in S2S scales. But trend-independent skill is small and statistically significant for lead time over 6 weeks only in summer.

Keywords

References

  1. Brunet, G., and Coauthors, 2010: Collaboration of the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction. Bull. Amer. Meteor. Soc., 91, 1397-1406, doi:10.1175/2010BAMS3013.1.
  2. Chevallier, M., D. Salas, Y. Melia, A. Voldoire, M. Deque, and G. Garric, 2013: Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J. Climate, 26, 6092-6104, doi:10.1175/JCLI-D-12-00612.1.
  3. Cohen, J., J. Jones, J. C. Furtado, and E. Tziperman, 2013: Warm Arctic, cold continents: a common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography, 26, 150-160, doi:10.5670/oceanog.2013.70.
  4. Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.
  5. Guemas, V., M. Chevallier, M. Deque, O. Bellprat, and F. Doblas-Reyes, 2016: Impact of sea ice initialization on sea ice and atmosphere prediction skill on seasonal timescales. Geophys. Res. Lett., 43, 3889-3896, doi:10.1002/2015GL066626.
  6. Gupta, A. S., L. C. Muir, J. N. Brown, S. J. Phipps, P. J. Durack, D. Monselesan, and S. E. Wijffels, 2012: Climate Drift in the CMIP3 Models. J. Climate, 25, 4621-4640, doi:10.1175/JCLI-D-11-00312.1.
  7. Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.
  8. Hurrell, J., G. A. Meehl, D. Bader, T. L. Delworth, B. Kirtman, and B. Wielicki, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90, 1819-1832, doi:10.1175/2009BAMS2752.1.
  9. Jeong, J.-H., H. W. Linderholm, S.-H. Woo, C. Folland, B.-M. Kim, S.-J. Kim, and D. Chen, 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 1956-1972, doi:10.1175/JCLI-D-12-00159.1.
  10. Kim, B.-M., E. Jung, G.-H. Lim, and H.-K. Kim, 2014: Analysis on Winter Atmosphereic Variability Related to Arctic Warming. Atmosphere, 24, 131-140, doi:10.14191/Atmos.2014.24.2.131 (in Korean with English abstract).
  11. MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quart. J. Roy. Meteoro. Soc., 141, 1072-1084, doi:10.1002/qj.2396.
  12. Merryfield, W. J., W.-S. Lee, W. Wang, M. Chen, and A. Kumar, 2013: Multi-system seasonal predictions of Arctic sea ice. Geophys. Res. Lett., 40, 1551-1556, doi:10.1002/grl.50317.
  13. Parkinson, C. L., and D. J. Cavalieri, 2008: Arctic sea ice variability and trends, 1979-2006. J. Geophys. Res., 113, C07003, doi:10.1029/2007JC004558.
  14. Peng, G., M. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311-318, doi:10.5194/essd-5-311-2013.
  15. Peterson, K. A., A. Arribas, H. T. Hewitt, A. B. Keen, D. J. Lea, and A. J. McLaren, 2015: Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system. Climate Dyn., 44, 147-167, doi:10.1007/s00382-014-2190-9.
  16. Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 2185-2208, doi:10.1175/JCLI-D-12-00823.1.
  17. Sewall, J. O., and L. C. Sloan, 2004: Less ice, less tilt, less chill: The influence of a seasonally ice-free Arctic Ocean and reduced obliquity on early Paleogene climate. Geology, 32, 477-480, doi:10.1130/g20295.1.
  18. Shim, T., J.-H. Jeong, B.-M. Kim, S.-J. Kim, and H.-K. Kim, 2013: Development of dynamical seasonal prediction system for northern winter using the cryospheric condition of late autumn. Atmosphere, 23, 73-83, doi:10.14191/Atmos.2013.23.1.073 (in Korean with English abstract).
  19. Sigmond, M., J. C. Fyfe, G. M. Flato, V. V. Kharin, and W. J. Merryfield, 2013: Seasonal forecast skill of Arctic sea ice areain a dynamical forecast system. Geophys. Res. Lett., 40, 529-534, doi:10.1002/grl.50129.
  20. Sigmond, M., M. C. Reader, G. M. Flato, W. J. Merryfield, and A. Tivy, 2016: Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system. Geophys. Res. Lett., 43, 12457-12465, doi:10.1002/2016GL071396.
  21. Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.
  22. Vitart, F., A. W. Robertson, and D. L. T. Anderson, 2012: Subseasonal to seasonal prediction project: Bridging the gap between weather and climate. WMO Bull., 61, 23-28.
  23. Voldoire, A., and Coathors, 2013: The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dyn., 40, 2091-2121, doi:10.1007/s00382-011-1259-y.
  24. Wang, W., M. Chen, and A. Kumar, 2012: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon. Wea. Rev., 141, 1375-1394, doi:10.1175/MWR-D-12-00057.1.
  25. Wu, Q., and X. Zhang, 2010: Observed forcing-feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J. Geophys. Res., 115, D14119, doi:10.1029/2009JD013574.
  26. Wu, T., and Coauthors, 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 34-56, doi:10.1007/s13351-014-3041-7.