• Title/Summary/Keyword: 앙상블 네트워크

Search Result 39, Processing Time 0.025 seconds

Behavior Network based Bayesian Network Ensemble Methodology for Recognizing Uncertain Environment (불확실한 환경 인식을 위한 행동 네트워크 기반 베이지안 네트워크 앙상블 기법)

  • Im Seugn-Bin;Cho Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.305-308
    • /
    • 2005
  • 시각 센서를 이용한 환경 및 상황 인식은 로봇의 자동화된 행동을 위해서 매우 중요하다. 실제 환경에서 사람은 주위를 인식할 때 여러 단계의 인식과정을 거친다. 효율적이고 정확한 환경 인식을 위해서는 지능형 로봇의 인식 또한 사람의 인식과정과 같이 다단계로 이루어져야 한다. 또한 실제 환경은 유동적이며 많은 불확실성을 가지고 있으므로 불확실한 상황에 강인한 인식 방법이 필요하다. 이러한 불확실성을 내포한 환경 및 상황 인식에는 베이지안 네트워크를 이용한 인식이 강인하나 복잡한 환경을 하나의 베이지안 네트워크로 인식하는 것은 어렵다. 이 논문에서는 복잡하고 불확실한 환경 인식을 위한 여러 베이지안 네트워크를 사람의 인식과 같은 다단계의 인식 과정으로 구성된 행동 네트워크 기반으로 결합하는 앙상블 기법을 제안한다. 불확실한 상황을 적용한 환경 실험과 로봇 시뮬레이터를 이용한 로봇 실험으로 베이지안 네트워크 앙상블 기법이 환경 인식에 효과적인 것을 확인할 수 있었다.

  • PDF

Ensemble of Specialized Networks based on Input Space Partition (입력공간 분담에 의한 네트워크들의 앙상블 알고리즘)

  • 신현정;이형주;조성준
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.33-36
    • /
    • 2000
  • 관찰학습(OLA: Observational Learning Algorithm)은 앙상블 네트워크의 각 구성 모델들이 다른 모델들을 관찰함으로써 얻어진 가상 데이터와 초기에 bo otstrap된 실제 데이터를 학습에 함께 이용하는 방법이다. 본 논문에서는, 초기 학습 데이터 셋을 분할하고 분할된 각 데이터 셋에 대하여 앙상블의 구성 모델들을 전문화(specialize)시키는 방법을 적용하여 기존의 관찰학습 알고리즘을 개선시켰다. 제안된 알고리즘은 bagging 및 boosting과의 비교실험에 의하여, 보다 적은 수의 구성 모델로 동일 내지 보다 나은 성능을 나타냄이 실험적으로 검증되었다.

  • PDF

Ensemble Learning Algorithm of Specialized Networks (전문화된 네트워크들의 결합에 의한 앙상블 학습 알고리즘)

  • 신현정;이형주;조성준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.308-310
    • /
    • 2000
  • 관찰학습(OLA: Observational Learning Algorithm)은 앙상블 네트워크의 각 구성 모델들이 아른 모델들을 관찰함으로써 얻어진 가상 데이터와 초기에 bootstrap된 실제 데이터를 학습에 함께 이용하는 방법이다. 본 논문에서는, 초기 학습 데이터 셋을 분할하고 분할된 각 데이터 셋에 대하여 앙상블의 구성 모델들을 전문화(specialize)시키는 방법을 적용하여 기존의 관찰학습 알고리즘을 개선시켰다. 제안된 알고리즘은 bagging 및 boosting과의 비교 실험에 의하여, 보다 적은 수의 구성 모델로 동일 내지 보다 나은 성능을 나타냄이 실험적으로 검증되었다.

  • PDF

Gait Type Classification Using Multi-modal Ensemble Deep Learning Network

  • Park, Hee-Chan;Choi, Young-Chan;Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.29-38
    • /
    • 2022
  • This paper proposes a system for classifying gait types using an ensemble deep learning network for gait data measured by a smart insole equipped with multi-sensors. The gait type classification system consists of a part for normalizing the data measured by the insole, a part for extracting gait features using a deep learning network, and a part for classifying the gait type by inputting the extracted features. Two kinds of gait feature maps were extracted by independently learning networks based on CNNs and LSTMs with different characteristics. The final ensemble network classification results were obtained by combining the classification results. For the seven types of gait for adults in their 20s and 30s: walking, running, fast walking, going up and down stairs, and going up and down hills, multi-sensor data was classified into a proposed ensemble network. As a result, it was confirmed that the classification rate was higher than 90%.

Feature Comparison of Emotion Recognition Models using Face Images (얼굴사진 기반 감정인식 모델의 특성 분석)

  • Kim, MinGeyung;Yang, Jiyoon;Choi, Yoo-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.615-617
    • /
    • 2022
  • 본 논문에서는 얼굴사진 기반 감정인식 심층망, 음성사운드를 기반한 감정인식 심층망을 결합한 앙상블 네트워크 구축을 위한 사전연구로서 얼굴사진 기반 감정을 인식하는 기존 딥뉴럴 네트워크 모델들을 입력 데이터 처리 방법에 따라 분류하고, 각 방법의 특성을 분석한다. 또한, 얼굴사진 외관 특성을 기반한 감정인식 네트워크를 여러 구조로 구성하고, 구성된 방법의 성능을 비교하여, 우수 성능을 보이는 네트워크를 선정하여 추후 앙상블 네트워크의 구성 네트워크로 사용하고자 한다.

Korean Dependency Parsing Using Deep Bi-affine Network and Stack Pointer Network (Deep Bi-affine Network와 스택 포인터 네트워크를 이용한 한국어 의존 구문 분석 시스템)

  • Ahn, Hwijeen;Park, Chanmin;Seo, Minyoung;Lee, Jaeha;Son, Jeongyeon;Kim, Juae;Seo, Jeongyeon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.689-691
    • /
    • 2018
  • 의존 구문 분석은 자연어 이해 영역의 대표적인 과제 중 하나이다. 본 논문에서는 한국어 의존 구분 분석의 성능 향상을 위해 Deep Bi-affine Network 와 스택 포인터 네트워크의 앙상블 모델을 제안한다. Bi-affine 모델은 그래프 기반 방식, 스택 포인터 네트워크의 경우 그래프 기반과 전이 기반의 장점을 모두 사용하는 모델로 서로 다른 모델의 앙상블을 통해 성능 향상을 기대할 수 있다. 두 모델 모두 한국어 어절의 특성을 고려한 자질을 사용하였으며 세종 의존 구문 분석 데이터에 대해 UAS 90.60 / LAS 88.26(Deep Bi-affine Network), UAS 92.17 / LAS 90.08(스택 포인터 네트워크) 성능을 얻었다. 두 모델에 대한 앙상블 기법 적용시 추가적인 성능 향상을 얻을 수 있었다.

  • PDF

Tor Network Website Fingerprinting Using Statistical-Based Feature and Ensemble Learning of Traffic Data (트래픽 데이터의 통계적 기반 특징과 앙상블 학습을 이용한 토르 네트워크 웹사이트 핑거프린팅)

  • Kim, Junho;Kim, Wongyum;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.6
    • /
    • pp.187-194
    • /
    • 2020
  • This paper proposes a website fingerprinting method using ensemble learning over a Tor network that guarantees client anonymity and personal information. We construct a training problem for website fingerprinting from the traffic packets collected in the Tor network, and compare the performance of the website fingerprinting system using tree-based ensemble models. A training feature vector is prepared from the general information, burst, cell sequence length, and cell order that are extracted from the traffic sequence, and the features of each website are represented with a fixed length. For experimental evaluation, we define four learning problems (Wang14, BW, CWT, CWH) according to the use of website fingerprinting, and compare the performance with the support vector machine model using CUMUL feature vectors. In the experimental evaluation, the proposed statistical-based training feature representation is superior to the CUMUL feature representation except for the BW case.

A New Ensemble System using Dynamic Weighting Method (동적 중요도 결정 방법을 이용한 새로운 앙상블 시스템)

  • Seo, Dong-Hun;Lee, Won-Don
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1213-1220
    • /
    • 2011
  • In this paper, a new ensemble system using dynamic weighting method with added weight information into classifiers is proposed. The weights used in the traditional ensemble system are those after the training phase. Once extracted, the weights in the traditional ensemble system remain fixed regardless of the test data set. One way to circumvent this problem in the gating networks is to update the weights dynamically by adding processes making architectural hierarchies, but it has the drawback of added processes. A simple method to update weights dynamically, without added processes, is proposed, which can be applied to the already established ensemble system without much of the architectural modification. Experiment shows that this method performs better than AdaBoost.

Face Recognition Network using gradCAM (gradCam을 사용한 얼굴인식 신경망)

  • Chan Hyung Baek;Kwon Jihun;Ho Yub Jung
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, we proposed a face recognition network which attempts to use more facial features awhile using smaller number of training sets. When combining the neural network together for face recognition, we want to use networks that use different part of the facial features. However, the network training chooses randomly where these facial features are obtained. Other hand, the judgment basis of the network model can be expressed as a saliency map through gradCAM. Therefore, in this paper, we use gradCAM to visualize where the trained face recognition model has made a observations and recognition judgments. Thus, the network combination can be constructed based on the different facial features used. Using this approach, we trained a network for small face recognition problem. In an simple toy face recognition example, the recognition network used in this paper improves the accuracy by 1.79% and reduces the equal error rate (EER) by 0.01788 compared to the conventional approach.

Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory (앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증)

  • Lee, Chan-Jae;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.57-67
    • /
    • 2018
  • The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.