Journal of the Korean Data and Information Science Society
/
v.24
no.1
/
pp.161-170
/
2013
The FX (Foreign Exchange) is a form of exchange for the global decentralized trading of international currencies. The simple sense of Forex is simultaneous purchase and sale of the currency or the exchange of one country's currency for other countries'. We can find the consistent rules of trading by comparing the gradient boosting method and the decision trees methods. Methods such as time series analysis used for the prediction of financial markets have advantage of the long-term forecasting model. On the other hand, it is difficult to reflect the rapidly changing price fluctuations in the short term. Therefore, in this study, gradient boosting method and decision tree method are applied to analyze the short-term data in order to make the rules for the revenue structure of the FX market and evaluated the stability and the prediction of the model.
We proposed a new classification algorithm based on bootstrap sampling and pairwise coupling method. Also, for comparing the accuracy of a proposed algorithm with those of old methods, we conducted classification with waveform data and others.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.168-168
/
2018
최근 기후변화로 인하여 전 세계적으로 과거 강우사상에서 확인되지 않는 극치사상이 빈번하게 관측되고 있으며 이에 따른 피해도 증가하고 있다. 미래의 기상학적 변동성 및 기후변화 영향은 지구순환모형 (General Circulation Models, GCM)을 통해 구체화되며 가장 일반적인 기후변화 전망자료로서 활용된다. 그러나 산정된 기후변화 시나리오마다 서로 그 특성에 차이가 있으며 이러한 이유로 다양한 원인으로 인해 큰 변동성을 가지는 미래 극치강우를 하나의 시나리오로 분석하기에는 무리가 있다. 또한 다양한 시나리오를 통해 분석한 결과값이 상이하며 이러한 시나리오별 산정 결과의 차이는 사용자에게 혼란을 야기할 수 있어 이를 하나의 결과로 나타낼 필요성이 있으나 정량적인 대푯값을 얻기 위해 특정 시나리오를 선택하는 것은 신뢰성에 문제가 있다. 본 연구에서는 시나리오들을 정량적 지표에 의거하여 혼합된 하나의 시나리오로 표출하고자 하였다. CORDEX-RCMs 시나리오 중 HadGEM3-RA, RegCM, SNU_WRF 및 GRIMs를 입력 자료로 하여 다중모형앙상블(Multi-Model Ensemble, MME)을 통해 낙동강 유역의 극치강우에 대한 하나의 최적 기후변화 시나리오를 도출하고자 하였으며 계층적 베이지안 (Hierarchical Bayesian Model, HBM) 기법을 통하여 기후변화 시나리오에 내제된 불확실성에 대한 정량적인 해석을 수행하였다.
Kim, Nayeon;Kim, Doyoung;Kim, Miryeo;Jung, Jiyeong;Kim, Hyon Hee
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.401-404
/
2022
한국 문학이 세계로 뻗어나감에 따라 해외 시장에서 자리를 잡는 것이 중요해진 시점이다. 본 연구에서는 2016 년도부터 2020 년도까지 최근 5 년간 해외 출간된 도서들 중에서 굿셀러로 분류되는 누적 5 천부 이상 판매 여부를 예측하고자 했다. 굿셀러로 분류되는 도서는 전체 번역 도서 중 적은 비율을 차지하여 데이터 불균형이 발생하였으며, 본 연구에서는 SMOTE 기법과 앙상블 알고리즘을 적용하여 데이터 불균형 문제를 해결하였다. 그 결과, 데이터 클래스 비율이 1:1 에 가까울수록 성능 개선 효과가 나타났으며 LightGBM 모델이 99.83%의 AUC 값을 얻어 다른 앙상블 알고리즘에 비해 가장 좋은 예측 성능을 보임을 검증하였다. 또한 누적 5 천부 이상 판매 여부 예측에 있어 큰 영향을 미치는 변수로는 작가가 가장 중요한 요인으로 나타났으며 출간 국가, 그리고 평점 평균, 평점 참여자 수 같은 온라인 요인도 판매 예측에 유의미한 변수로 나타난 것을 확인할 수 있었다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.153-153
/
2020
우리나라에선 크고 작은 가뭄 피해가 자주 일어나고 있으며 최근엔 유래 없는 다년가뭄이 발생하면서 가뭄에 대한 경각심이 커지고 있다. 가뭄에 적절하게 대응하여 피해를 경감시키기 위해서는 신뢰도 높은 가뭄 예측이 선행되어야 한다. 이에 본 연구는 앙상블 예측과 베이즈이론(Bayes' theorem)을 수문학적 가뭄지수 중 하나인 SRI(Standardized Runoff Index)에 적용해 가뭄 확률 전망을 실시했으며 이를 EDP(Ensemble Drought Prediction)라고 칭하였다. 국내 8개 댐유역에서 EDP를 생성하고 개선하는 과정은 다음과 같이 진행된다. 우선 TANK모형을 활용한 1개월 선행 유량 예측(Ensemble Streamflow Prediction, ESP)의 결과를 SRI로 변환하여 EDP 확률분포를 생성한다. 그런 다음, EDP를 개선하기 위해 그 기초인 ESP에서 미흡한 토양수분 초기조건을 보완하고자 베이즈이론을 활용했다. APCC(APEC Climate Center)의 위성 관측 SMI(Soil Moisture Index) 자료로 SRI와의 회귀식을 구축, 이를 우도함수로 정의해 사전 EDP 분포를 업데이트한 EDP+ 확률분포를 생성했다. 그 결과, EDP와 EDP+ 모두 심도가 깊은 가뭄을 전망할수록 예측력이 기후학적 예측보다 좋지 않았다. 그럼에도 우도함수로 사용한 회귀식의 정확도가 높을수록 EDP+의 정확도도 향상되는 경향이 나타났으며, 이는 베이즈이론을 사용한다면 가뭄 확률 전망을 개선할 수 있다는 것을 의미하고 있다. 하지만, 확정 전망 정확도는 확률 전망 정확도와는 관계가 없었는데 이는 확정 전망과 확률 전망이 본질적으로 다르기 때문인 것으로 사료된다.
Ji-Hyun Sung;Kwon-Yong Lee;Sang-Won Lee;Min-Jae Seok;Se-Rin Kim;Harksu Cho
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.6
/
pp.1033-1042
/
2023
This paper proposes a network intrusion detection system that identifies abnormal flows within the network. The majority of datasets commonly used in research lack time-series information, making it challenging to improve detection rates for attacks with fewer instances due to a scarcity of sample data. However, there is insufficient research regarding detection approaches. In this study, we build upon previous research by using the Artificial neural network(ANN) model and a stack ensemble technique in our approach. To address the aforementioned issues, we incorporate temporal information by leveraging adjacent flows and enhance the learning of samples from sparse attacks, thereby improving both the overall detection rate and the detection rate for sparse attacks.
The objective of this study is to assess Sejong University River Forecast (SURF) model which consists of a continuous rainfall-runoff model and measured streamflow assimilation using ensemble Kalman filter technique for streamflow forecast on Nakdong river basin. The study area is divided into 43 subbasins. The forecasted streamflows are evaluated at 12 measurement sites during flood season from 2006 to 2007. The forecasted ones are improved due to the impact of the measured streamflows assimilation. In effectiveness indices corresponding to 1~5 h forecast lead times, the accuracy of the forecasted streamflows with the assimilation approach is improved by 46.2~30.1% compared with that using only the rainfall-runoff model. The mean normalized absolute error of forecasted peak flow without and with data assimilation approach in entering 50% of the measured rainfall, respectively, the accuracy of the latter is improved about 40% than that of the former. From these results, SURF model is able to be used as a real-time river forecast model.
Named entity recognition is a process which extracts named entities in sentences and determines categories of the named entities. Previous studies on named entity recognition have primarily been used for supervised learning. For supervised learning, a large training corpus manually annotated with named entity categories is needed, and it is a time-consuming and labor-intensive job to manually construct a large training corpus. We propose a semi-supervised learning method to minimize the cost needed for training corpus construction and to rapidly enhance the performance of named entity recognition. The proposed method uses distance supervision for the construction of the initial training corpus. It can then effectively remove noise sentences in the initial training corpus through the use of an active bagging method, an ensemble method of bagging and active learning. In the experiments, the proposed method improved the F1-score of named entity recognition from 67.36% to 76.42% after active bagging for 15 times.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1784-1788
/
2010
APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 형태의 계절예측정보를 이용하여 3개월 가뭄전망을 수행하였다. APCC MME는 기후예측모형이 가지는 불확실성을 최소화하기 위한 방법으로, 아시아 태평양 지역 내 9개 회원국 16개 기관 21개 기후모형의 계절예측정보를 활용하여, 개별 모형이 가지는 계통오차(Systematic error)를 앙상블 기법을 통하여 상쇄함으로써 최적의 예측자료를 도출한다. 또한, 기후예측 모형이 예측한 대기순환장은 관측 지점변수와 경험적 통계적 관련성을 가지므로, 이를 바탕으로 상세지역의 이상기후에 대한 정보를 도출할 수 있다. 본 연구에서는 가뭄 관리 및 전망을 위한 입력 자료로서, 기상전문 기관인 APEC 기후센터 (APEC Climate Center, APCC)에서 제공하는 전구 규모의 기온 및 강수 전망자료를 기상청 산하 59개 지점의 전망자료로 통계적 규모 축소화 기법을 통해 3개월 예보를 실시하였다. APCC 계절예측자료를 가뭄모니터링시스템의 자료입력 포맷에 따라 적절히 가공한 뒤, 가뭄 관리 및 전망을 위하여 SPI(Standard Precipitation Index) 및 PDSI(Palmer Drought Severity Index)지수의 입력자료로 사용하여 SPI 및 PDSI 지수를 산정하였다. 또한 분위사상법(Quantile Mapping)을 이용하여 총 59개 지점의 과거 월평균 관측값과 최근 2009년에 대한 모의값의 누적확률분포값을 계산하고 모의값의 확률분포를 관측값의 확률분포에 사상시켜 가뭄 전망을 위한 기상변수의 오차를 보정하고자 하였다. 이러한 계절예측정보를 이용하여 가뭄 전망에 대한 신뢰도가 높아진다면, 사전예방 및 피해완화로 가뭄상황에 대한 신속한 대처 및 피해의 경감이 이루어질 수 있을 것이다.
Lee, Woo Chang;Kim, Yang Sok;Kim, Jung Min;Lee, Choong Kwon
Journal of Korea Society of Industrial Information Systems
/
v.25
no.2
/
pp.57-72
/
2020
The price of iron ore has continued to fluctuate with high demand and supply from many countries and companies. In this business environment, forecasting the price of iron ore has become important. This study developed the machine learning model forecasting the price of iron ore a one month after the trading events. The forecasting model used distributed lag model and deep learning models such as MLP (Multi-layer perceptron), RNN (Recurrent neural network) and LSTM (Long short-term memory). According to the results of comparing individual models through metrics, LSTM showed the lowest predictive error. Also, as a result of comparing the models using the ensemble technique, the distributed lag and LSTM ensemble model showed the lowest prediction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.