• Title/Summary/Keyword: 앙상블기법

Search Result 301, Processing Time 0.034 seconds

The study of foreign exchange trading revenue model using decision tree and gradient boosting (외환거래에서 의사결정나무와 그래디언트 부스팅을 이용한 수익 모형 연구)

  • Jung, Ji Hyeon;Min, Dae Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.161-170
    • /
    • 2013
  • The FX (Foreign Exchange) is a form of exchange for the global decentralized trading of international currencies. The simple sense of Forex is simultaneous purchase and sale of the currency or the exchange of one country's currency for other countries'. We can find the consistent rules of trading by comparing the gradient boosting method and the decision trees methods. Methods such as time series analysis used for the prediction of financial markets have advantage of the long-term forecasting model. On the other hand, it is difficult to reflect the rapidly changing price fluctuations in the short term. Therefore, in this study, gradient boosting method and decision tree method are applied to analyze the short-term data in order to make the rules for the revenue structure of the FX market and evaluated the stability and the prediction of the model.

Optimum Climate Change Scenario Estimation via Hierarchical Bayesian Model : Using CORDEX Scenarios (계층적 베이지안 모델을 통한 최적 기후변화 시나리오 추정 : CORDEX 시나리오 사용)

  • Jung, Min-Kyu;Kim, Yong-Tak;Kim, Hyeon-Muk;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.168-168
    • /
    • 2018
  • 최근 기후변화로 인하여 전 세계적으로 과거 강우사상에서 확인되지 않는 극치사상이 빈번하게 관측되고 있으며 이에 따른 피해도 증가하고 있다. 미래의 기상학적 변동성 및 기후변화 영향은 지구순환모형 (General Circulation Models, GCM)을 통해 구체화되며 가장 일반적인 기후변화 전망자료로서 활용된다. 그러나 산정된 기후변화 시나리오마다 서로 그 특성에 차이가 있으며 이러한 이유로 다양한 원인으로 인해 큰 변동성을 가지는 미래 극치강우를 하나의 시나리오로 분석하기에는 무리가 있다. 또한 다양한 시나리오를 통해 분석한 결과값이 상이하며 이러한 시나리오별 산정 결과의 차이는 사용자에게 혼란을 야기할 수 있어 이를 하나의 결과로 나타낼 필요성이 있으나 정량적인 대푯값을 얻기 위해 특정 시나리오를 선택하는 것은 신뢰성에 문제가 있다. 본 연구에서는 시나리오들을 정량적 지표에 의거하여 혼합된 하나의 시나리오로 표출하고자 하였다. CORDEX-RCMs 시나리오 중 HadGEM3-RA, RegCM, SNU_WRF 및 GRIMs를 입력 자료로 하여 다중모형앙상블(Multi-Model Ensemble, MME)을 통해 낙동강 유역의 극치강우에 대한 하나의 최적 기후변화 시나리오를 도출하고자 하였으며 계층적 베이지안 (Hierarchical Bayesian Model, HBM) 기법을 통하여 기후변화 시나리오에 내제된 불확실성에 대한 정량적인 해석을 수행하였다.

  • PDF

Prediction of Good Seller in Overseas sales of Domestic Books Using Big Data (빅데이터를 활용한 국내 도서의 해외 판매시 굿셀러 예측)

  • Kim, Nayeon;Kim, Doyoung;Kim, Miryeo;Jung, Jiyeong;Kim, Hyon Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.401-404
    • /
    • 2022
  • 한국 문학이 세계로 뻗어나감에 따라 해외 시장에서 자리를 잡는 것이 중요해진 시점이다. 본 연구에서는 2016 년도부터 2020 년도까지 최근 5 년간 해외 출간된 도서들 중에서 굿셀러로 분류되는 누적 5 천부 이상 판매 여부를 예측하고자 했다. 굿셀러로 분류되는 도서는 전체 번역 도서 중 적은 비율을 차지하여 데이터 불균형이 발생하였으며, 본 연구에서는 SMOTE 기법과 앙상블 알고리즘을 적용하여 데이터 불균형 문제를 해결하였다. 그 결과, 데이터 클래스 비율이 1:1 에 가까울수록 성능 개선 효과가 나타났으며 LightGBM 모델이 99.83%의 AUC 값을 얻어 다른 앙상블 알고리즘에 비해 가장 좋은 예측 성능을 보임을 검증하였다. 또한 누적 5 천부 이상 판매 여부 예측에 있어 큰 영향을 미치는 변수로는 작가가 가장 중요한 요인으로 나타났으며 출간 국가, 그리고 평점 평균, 평점 참여자 수 같은 온라인 요인도 판매 예측에 유의미한 변수로 나타난 것을 확인할 수 있었다.

Improvement in probabilistic drought prediction method using Bayes' theorem (베이즈이론을 이용한 가뭄 확률 전망 기법 고도화)

  • Kim, Daeho;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.153-153
    • /
    • 2020
  • 우리나라에선 크고 작은 가뭄 피해가 자주 일어나고 있으며 최근엔 유래 없는 다년가뭄이 발생하면서 가뭄에 대한 경각심이 커지고 있다. 가뭄에 적절하게 대응하여 피해를 경감시키기 위해서는 신뢰도 높은 가뭄 예측이 선행되어야 한다. 이에 본 연구는 앙상블 예측과 베이즈이론(Bayes' theorem)을 수문학적 가뭄지수 중 하나인 SRI(Standardized Runoff Index)에 적용해 가뭄 확률 전망을 실시했으며 이를 EDP(Ensemble Drought Prediction)라고 칭하였다. 국내 8개 댐유역에서 EDP를 생성하고 개선하는 과정은 다음과 같이 진행된다. 우선 TANK모형을 활용한 1개월 선행 유량 예측(Ensemble Streamflow Prediction, ESP)의 결과를 SRI로 변환하여 EDP 확률분포를 생성한다. 그런 다음, EDP를 개선하기 위해 그 기초인 ESP에서 미흡한 토양수분 초기조건을 보완하고자 베이즈이론을 활용했다. APCC(APEC Climate Center)의 위성 관측 SMI(Soil Moisture Index) 자료로 SRI와의 회귀식을 구축, 이를 우도함수로 정의해 사전 EDP 분포를 업데이트한 EDP+ 확률분포를 생성했다. 그 결과, EDP와 EDP+ 모두 심도가 깊은 가뭄을 전망할수록 예측력이 기후학적 예측보다 좋지 않았다. 그럼에도 우도함수로 사용한 회귀식의 정확도가 높을수록 EDP+의 정확도도 향상되는 경향이 나타났으며, 이는 베이즈이론을 사용한다면 가뭄 확률 전망을 개선할 수 있다는 것을 의미하고 있다. 하지만, 확정 전망 정확도는 확률 전망 정확도와는 관계가 없었는데 이는 확정 전망과 확률 전망이 본질적으로 다르기 때문인 것으로 사료된다.

  • PDF

Intrusion Detection System Utilizing Stack Ensemble and Adjacent Netflow (스텍앙상블과 인접 넷플로우를 활용한 침입 탐지 시스템)

  • Ji-Hyun Sung;Kwon-Yong Lee;Sang-Won Lee;Min-Jae Seok;Se-Rin Kim;Harksu Cho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1033-1042
    • /
    • 2023
  • This paper proposes a network intrusion detection system that identifies abnormal flows within the network. The majority of datasets commonly used in research lack time-series information, making it challenging to improve detection rates for attacks with fewer instances due to a scarcity of sample data. However, there is insufficient research regarding detection approaches. In this study, we build upon previous research by using the Artificial neural network(ANN) model and a stack ensemble technique in our approach. To address the aforementioned issues, we incorporate temporal information by leveraging adjacent flows and enhance the learning of samples from sparse attacks, thereby improving both the overall detection rate and the detection rate for sparse attacks.

Streamflow Forecast Model on Nakdong River Basin (낙동강유역 하천유량 예측모형 구축)

  • Lee, Byong-Ju;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.853-861
    • /
    • 2011
  • The objective of this study is to assess Sejong University River Forecast (SURF) model which consists of a continuous rainfall-runoff model and measured streamflow assimilation using ensemble Kalman filter technique for streamflow forecast on Nakdong river basin. The study area is divided into 43 subbasins. The forecasted streamflows are evaluated at 12 measurement sites during flood season from 2006 to 2007. The forecasted ones are improved due to the impact of the measured streamflows assimilation. In effectiveness indices corresponding to 1~5 h forecast lead times, the accuracy of the forecasted streamflows with the assimilation approach is improved by 46.2~30.1% compared with that using only the rainfall-runoff model. The mean normalized absolute error of forecasted peak flow without and with data assimilation approach in entering 50% of the measured rainfall, respectively, the accuracy of the latter is improved about 40% than that of the former. From these results, SURF model is able to be used as a real-time river forecast model.

Named Entity Recognition Using Distant Supervision and Active Bagging (원거리 감독과 능동 배깅을 이용한 개체명 인식)

  • Lee, Seong-hee;Song, Yeong-kil;Kim, Hark-soo
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.269-274
    • /
    • 2016
  • Named entity recognition is a process which extracts named entities in sentences and determines categories of the named entities. Previous studies on named entity recognition have primarily been used for supervised learning. For supervised learning, a large training corpus manually annotated with named entity categories is needed, and it is a time-consuming and labor-intensive job to manually construct a large training corpus. We propose a semi-supervised learning method to minimize the cost needed for training corpus construction and to rapidly enhance the performance of named entity recognition. The proposed method uses distance supervision for the construction of the initial training corpus. It can then effectively remove noise sentences in the initial training corpus through the use of an active bagging method, an ensemble method of bagging and active learning. In the experiments, the proposed method improved the F1-score of named entity recognition from 67.36% to 76.42% after active bagging for 15 times.

Drought Outlook using APCC MME Seasonal Prediction Information (APCC MME 계절예측정보를 이용한 가뭄전망)

  • Kang, Boo-Sik;Moon, Su-Jin;Sohn, Soo-Jin;Lee, Woo-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1784-1788
    • /
    • 2010
  • APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 형태의 계절예측정보를 이용하여 3개월 가뭄전망을 수행하였다. APCC MME는 기후예측모형이 가지는 불확실성을 최소화하기 위한 방법으로, 아시아 태평양 지역 내 9개 회원국 16개 기관 21개 기후모형의 계절예측정보를 활용하여, 개별 모형이 가지는 계통오차(Systematic error)를 앙상블 기법을 통하여 상쇄함으로써 최적의 예측자료를 도출한다. 또한, 기후예측 모형이 예측한 대기순환장은 관측 지점변수와 경험적 통계적 관련성을 가지므로, 이를 바탕으로 상세지역의 이상기후에 대한 정보를 도출할 수 있다. 본 연구에서는 가뭄 관리 및 전망을 위한 입력 자료로서, 기상전문 기관인 APEC 기후센터 (APEC Climate Center, APCC)에서 제공하는 전구 규모의 기온 및 강수 전망자료를 기상청 산하 59개 지점의 전망자료로 통계적 규모 축소화 기법을 통해 3개월 예보를 실시하였다. APCC 계절예측자료를 가뭄모니터링시스템의 자료입력 포맷에 따라 적절히 가공한 뒤, 가뭄 관리 및 전망을 위하여 SPI(Standard Precipitation Index) 및 PDSI(Palmer Drought Severity Index)지수의 입력자료로 사용하여 SPI 및 PDSI 지수를 산정하였다. 또한 분위사상법(Quantile Mapping)을 이용하여 총 59개 지점의 과거 월평균 관측값과 최근 2009년에 대한 모의값의 누적확률분포값을 계산하고 모의값의 확률분포를 관측값의 확률분포에 사상시켜 가뭄 전망을 위한 기상변수의 오차를 보정하고자 하였다. 이러한 계절예측정보를 이용하여 가뭄 전망에 대한 신뢰도가 높아진다면, 사전예방 및 피해완화로 가뭄상황에 대한 신속한 대처 및 피해의 경감이 이루어질 수 있을 것이다.

  • PDF

Forecasting of Iron Ore Prices using Machine Learning (머신러닝을 이용한 철광석 가격 예측에 대한 연구)

  • Lee, Woo Chang;Kim, Yang Sok;Kim, Jung Min;Lee, Choong Kwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.57-72
    • /
    • 2020
  • The price of iron ore has continued to fluctuate with high demand and supply from many countries and companies. In this business environment, forecasting the price of iron ore has become important. This study developed the machine learning model forecasting the price of iron ore a one month after the trading events. The forecasting model used distributed lag model and deep learning models such as MLP (Multi-layer perceptron), RNN (Recurrent neural network) and LSTM (Long short-term memory). According to the results of comparing individual models through metrics, LSTM showed the lowest predictive error. Also, as a result of comparing the models using the ensemble technique, the distributed lag and LSTM ensemble model showed the lowest prediction.