• Title/Summary/Keyword: 압축크리프

Search Result 75, Processing Time 0.023 seconds

Evaluation of Physical Properties and Long-term Stability of Expansion Materials for Emergency Repair by Temperature (긴급복구용 팽창재료의 온도에 따른 물리적 특성 및 장기 안전성 평가)

  • Park, Jeongjun;Kim, Kisung;Kang, Hyounhoi;Kim, Ju-Ho;Hong, Gigwon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.79-88
    • /
    • 2018
  • In this study, the changes of the expansion and strength according to the temperature of the emergency repairing expansion material were examined by cup foaming test and uniaxial compressive strength test, and the accelerated compression creep test was carried out to confirm the long term stability. Ramp & Hold test and accelerated compressive creep test were performed to evaluate the creep performance. The short - term creep test was used to determine the initial creep strain of the expanding material. The isothermal method using time - To evaluate the long - term compressive creep performance.

A Study on the Properties of Shrinkage and Creep Deformation in Superplasticized Concrete (유동화 콘크리트의 건조수축 및 크리프 변형특성에 관한 연구)

  • 박승범;임창덕
    • Computational Structural Engineering
    • /
    • v.1 no.2
    • /
    • pp.131-142
    • /
    • 1988
  • This study was carried out to investigate the long-term deformation of superplasticized concrete. Compressive strength, shrinkage, creep and creep recovery of concretes with and without the superplasticizing admixture have been compared for one year. The test results on creep of superplasticized concrete were also compared with three methods of predicting creep; the ACI model, the CEB model and the BP model. According to test results, superplasticized concrete has good results in compressive strength at an age of 28 days of more than 22%, drying-shrinkage cured at air-conditioned storage less than 15%, creep deformation in air conditioned storage and loaded at an age of 28 days to 15% of compressive strength less than 11% of control concrete.

  • PDF

포항분지 제3기 이암의 크리프 특성

  • 김광식;김교원;정자혜
    • Proceedings of the KSEG Conference
    • /
    • 2001.03a
    • /
    • pp.3-14
    • /
    • 2001
  • 암석은 외력하에서 탄성 및 점탄성적 변형거동을 보인다. 크리프 특성은 일정하중하에서 시간에 대한 암석의 변형으로 장기적인 지반거동을 예측할 수 있는 중요한 요소이며 암석의 점탄성적 성질을 반영한다. 포항지역에 분포하는 미고결 퇴적암인 이암을 대상으로 암석의 기본적인 물성, 역학적 특성 및 크리프 시험을 실시하였다. 일축압축강도의 40-70% 응력수준에서 순간탄성변형률은 하중의 증가에 대하여 선형적인 관계를 보였으며, 일차 크리프변형률은 시간경과에 대하여 로그함수로 적절히 설명되었다. 일차 크리프에서 이차 크리프로 진행하는 과정을 살피기 위하여 약 5일 이상의 시간이 필요하였으며 최종 크리프 변형에 의한 파괴시의 변형률은 약 0.01로 밝혀졌다.

  • PDF

Creep behaviour of mudstone in the tertiary Duho Formation at Pohang basin (포항분지 제3기 두호층 이암의 크리프 거동)

  • 김광식;김교원
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.227-238
    • /
    • 2003
  • Understanding of a creep behavior in rocks under a constant load, due to visco-elastic properties of rock, is an essential element to predict a long term ground deformation. In order to clarify the creep characteristics of the mudstone in Duho formation at Pohang basin, deposited during Tertiary, a series of laboratory tests including physical properties, unconfined compressive strength and uniaxial creep tests, was performed. The mudstone showed a higher creep potential due to 26% of clay minerals such as illite and chlorite. The unconfined compressive strength of the rock was $462{\;}kg/\textrm{cm}^2$ in average, and four creep tests were performed under constant stress of 40 to 70 % of the strength. The creep constants in the empirical and theoretical equations were deduced from the time-strain curves obtained from the tests. Among the several equations, the empirical equation proposed by Griggs and theoretical equation of Burger’s model are appreciated as the best one to express the creep behavior of the mudstone. Instantaneous elastic strain was linearly increased with stress level but strain velocity during the first creep is decreased with a similar pattern by time lapse regardless the stress level.

Effect of Gamma-Irradiation Sterilization on the Creep and Wear of Ultra-High Molecular Weight Polyethylene (감마선 멸균처리가 초고분자량 폴리에틸렌의 크리프와 마모에 미치는 영향)

  • Lee, Kwon-Yong;Lee, Soo-Cheol;Lee, Keun-Ho
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 1998
  • 인공관절 라이너에 널리 사용되는 대표적 생체재료인 초고분자량 폴리에틸렌(Ultra-High Molecular Weight Polyethylene)은 체내에 삽입되기 전에 멸균처리를 거쳐야 하며, 가장 보편적인 멸균방법은 감마선을 이용한 멸균처리이다. 그러나, 감마선은 폴리에틸렌의 화학분자 결합구조에 변화를 일으키며, 따라서 물리적, 기계적 물성치에 변화를 야기시킨다. 이는 인공관절 수명을 좌우하는 변형과 마모현상에도 결정적 영향을 줄 것으로 사려된다. 본 연구에서는 감마선 멸균처리가 UHMWPE의 크리프 변형 및 마모에 미치는 영향이 관찰되었고, 그 결과들은 감마선 멸균처리로 야기된 폴리에틸렌의 화학분자 결합구조의 변화(Crystallinity, Oxidation, Crosslinking)와 함께 분석되었다. 압축 제작된 초고분자량 폴리에틸렌 봉(extruded UHMWPE rod)으로부터 원통형의 시평을 제작하여 감마선 멸균처리를 행하고, 압축 크리프 실험과 마모 실험을 실시하여 멸균처리하지 않은 시편을 제작하여 감마선 멸균처리를 행하고, 압축 크리프 실험과 마모 실험을 실시하여 멸균처리하지 않은 시편 사이에는 크리프 복원정도를 제외하고 거의 차이가 없었으나, 반면에 마모의 경우, 감마선 멸균처리된 시편이 멸균처리하지 않은 시편보다 훨씬 적은 마모량을 보였다(p〈0.05). 이것은 crosslinking 증가에 따른 마모 저항력 향상으로 볼 수 있다.

Investigation on Factors Influencing Creep Prediction and Proposal of Creep Prediction Model Considering Concrete Mixture in the Domestic Construction Field (크리프 예측 영향요인 검토 및 국내 건설현장 콘크리트 배합을 고려한 크리프 예측 모델식 제안)

  • Moon, Hyung-Jae;Seok, Won-Kyun;Koo, Kyung-Mo;Lee, Sang-Kyu;Hwang, Eui-Chul;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.503-510
    • /
    • 2019
  • Recently, construction technology of RC structures must be examined for creep in concrete. The factors affecting the creep prediction of concrete and the results of creep in domestic construction field were reviewed. The longer the creep test period and the higher the compressive strength, the higher the creep prediction accuracy. The higher the curing temperature, the higher the initial strength development of the concrete, but the difference in the creep coefficients increased over time. Based on the results of creep evaluation in the domestic construction field and lab. tests, a modified predictive model that complements the ACI-209 model was proposed. In the creep prediction of real members using general to high strength concrete, the test period and temperature should be considered precisely.

An Experimental Study of the Long-term Creep characteristic of High Damping Rubber Bearings (고감쇠 고무받침의 장기 크리프 특성에 대한 실험적 연구)

  • Oh, Ju;Park, Jin-Young;Park, Kun-Nok;Kim, See-Dong;Park, Sung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • Isolated structures use devices such as high damping rubber bearings (HDRB) in order to dramatically reduce the seismic forces transmitted from the substructure to the superstructure. The laminated rubber bearing is the most important structural member of a seismic isolation system. The basic characteristics of rubber bearings have been confirmed through compression tests, compressive shearing tests and creep tests. This paper presents the results and analysis of a 1000hr, ongoing creep test conducted at 7.5MPa, 8.37MPa in our laboratory. The long-term behavior of bridge bearings, such as high-damping rubber bearings, will be discovered through a compression creep test subjected to actual environmental conditions. These tests indicated that the maximum creep deformation is about $0.3{\sim}1.92%$ of total rubber thickness.

Suggestion of the Prediction Model for Material Properties and Creep of 60~80MPa Grade High Strength Concrete (설계기준강도 60~80MPa급 고강도콘크리트의 재료 특성 및 크리프 예측모델식 제안)

  • Moon, Hyung-Jae;Koo, Kyung-Mo;Kim, Hong-Seop;Seok, Won-Kyun;Lee, Byeong-Goo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.517-525
    • /
    • 2018
  • The construction of super tall building which structure is RC and must be certainly considered on column shortening estimation and construction reflected concrete creep has been increased. Regarding the Fck 60~80MPa grade high strength concrete applied in the domestic super tall building project, the mechanical properties and creep deflection according to curing conditions(Drying creep/Basic creep) were reviewed in this research. Results of compressive strength and elastic modulus under sealed curing condition were 5% higher than unsealed condition and difference of results according to the curing condition was increased over time. Autogenous and drying shrinkage tendency showed adversely in the case of high strength concrete. Additionally, creep modulus under unseal curing condition was evaluated 2~3 times higher than sealed condition. Modified model of ACI-209 based on test result was applied to estimate long period shortening of vertical members(such as Core Wall/Mega Column) exactly, it is designed to modify and suggest the optimal creep model based on various data accumulated during construction, in the future.

Moment Magnifier Method for Long-Term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동을 고려한 모멘트 증대법)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.38-45
    • /
    • 2001
  • Numerical studies were carried out to develop the moment magnifier method for long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. Nonlinear finite element analyses were performed for the numerical studies. Through the numerical studies, the long term behavior of the flat plate subjected to uniform or nonuniform floor load was investigated, and creep effects on the degradation of strength and stiffness of the slabs were examined. As a result, the creep factor was implemented to describe the creep effect on the flat plate. The moment magnifier method using the creep factor was developed for long-term behavior of flat plates. Also, the design examples were shown for the verification of the proposed design method.