• Title/Summary/Keyword: 압축천연가스와 경유

Search Result 9, Processing Time 0.024 seconds

Economic Feasibility Assessment and Analysis of Dual Fuel Systems Utilizing Diesel and Compressed Natural Gas (경유와 압축천연가스의 혼소 시스템에 대한 경제적 타당성 평가 분석)

  • Cho, A-Ra;Lim, Seong-Rin
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.166-174
    • /
    • 2018
  • Since particulate matter has high impacts on human health and everyday life, the dual fuel systems utilizing diesel and compressed natural gas have been developed to improve the environmental performance of diesel vehicles. The objective of this study is to estimate the economic feasibility of the dual fuel system based on real operating data of dual fuel buses and diesel buses. The system is economically feasible if the annual mileage of the dual bus is higher than 30,000 km, or if the unit fuel price of diesel is higher than that of CNG by 408 won. The uncertainty analysis results show that the economic feasibility of the system is probabilistically high, regardless of the variability of input data such as mileage and unit prices for the fuels. The sensitivity analysis results show that diesel and CNG prices are the highest contributor to the net present value of the system. Based on these results, economic incentives are suggested to disseminate the systems. This study would provide valuable economic information for bus business industry and policy maker to help make decisions for applying and disseminating the dual fuel systems to mitigate particulate matter problems.

Improving Performance and Emissions in a Diesel Engine Dual Fueled with Compressed Natural Gas (CNG와 경유의 2원 연료 디젤기관의 성능 및 배출가스 개선을 위한 실험연구)

  • ;Masahiro Shioji
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2000
  • This paper deals with a study on combustion and emission characteristics of a direct injection diesel engine dual fueled with natural gas. Dual fuelling systems tend to emit high unburned fuel especially at low load, resulting in a decreased thermal efficiency. This is because natural gas-air mixtures are too lean for flame to propagate under low load conditions. Suction air quantity and injection timing controls are very useful to improve emissions and thermal efficiency at low load.

  • PDF

Engine Management System remodeling from diesel to CNG system on used diesel truck(3.3L) (노후 경유자동차의 천연가스 자동차로의 개조기술 개발)

  • Lee, J.S.;Kim, B.G.;Chea, J.M.;Han, J.O.;Na, P.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3335-3340
    • /
    • 2007
  • The government have been tightening EM regulation gradually but the effect is not good because of rapid increase of vehicles. And medium & heavy duty diesel vehicles, even though the number is small, exhaust very large pollutants(about over 50%). Especially it is more severe about old trucks and buses. Accordingly, CNG vehicle and the retrofit of diesel to CNG must be an alternative in order to protect the atmospheric environment and improve the air quality in the metropolitan area. The main object of this study is to secure the retrofit technology of diesel to CNG vehicle and the management system of CNG engine. we passed the government emission certification test. In addition to this, the mass production for retrofit is also studied. Results of emission and durability test for certification are as follows; there was no problem during 30,000km vehicle durability test and good emission levels satisfying the regulation.

  • PDF

Emission Reduction by Mixture Formation in a Diesel-Natural Gas Dual-Fuel Engine at Low Loads (경유-천연가스 이종연료 엔진의 저부하 영역에서 혼합기 형성을 통한 배기배출 저감)

  • Park, Hyunwook;Lee, Junsun;Oh, Seungmook;Kim, Changup;Lee, Yongkyu;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • A mixture preparation strategy was proposed and evaluated in a diesel-natural gas dual-fuel engine to reduce hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. An experimental investigation was conducted in a single-cylinder compression-ignition engine. Natural gas was supplied with air during the intake stroke, and diesel was injected directly into the combustion chamber during the compression stroke. First, effects of diesel start of energizing (SOE) and natural gas substitution ratio on the combustion and exhaust gas emissions were analyzed. Based on the results, the mixture preparation strategy was established. A low natural gas substitution ratio and a high exhaust gas recirculation (EGR) rate were effective in reducing the HC and CO emissions.

An Investigation on the Emission Characteristics of Heavy-duty Vehicles using CNG and Diesel Fuel According to the Various Driving Cycles (다양한 주행모드에 따른 천연가스(CNG) 및 경유 사용 대형자동차의 배출가스 특성에 관한 연구)

  • Kim, Hyungjun;Eom, Myungdo;Kim, Jeongsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.634-639
    • /
    • 2012
  • The contribution levels of emissions from the heavy-duty vehicles have been continuously increased. Among the exhaust emissions, NOx (nitric oxides) have a ratio of 73.2% and particle matters have a proportion of 61.8% in the heavy-duty vehicles. Also, natural gas vehicles have the 78.9% of total registered local buses in Korea. Therefore, the investigation on emission characteristics of heavy-duty vehicles using CNG and diesel fuel according to the various driving cycles was carried out in this study. In order to analyze the emission characteristics, the five kinds of buses by using CNG and diesel fuels with a after-treatment devices (DPF, p-DPF) was used and five test driving schedules were applied for analysis of emission characteristics in a chassis dynamometer. To analyze the exhaust emission, the exhaust emission and PM analyzers were used. From this study, it is revealed that diesel buses with after-treatment had reduced emission of CO, HC, PM but NOx. Also, NMHC emission of CNG bus have a higher level and NOx level was similar with diesel buses. In addition, emissions in NIER06 with slow average speed shows lowest levels compared to other test modes.

The Engine Performance and Emission Characteristics of CNG/Diesel Dual-fuel Engine by CNG Mixing Ratio (CNG/Diesel Dual-fuel 엔진의 CNG 혼합율에 따른 엔진성능 및 배출가스 특성에 관한 연구)

  • Choi, Gun-Ho;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.38-43
    • /
    • 2011
  • A CNG/diesel dual-fuel engine uses CNG as the main fuel and injects a small amount of diesel as an ignition priming. This study proposed the modification of the existing diesel engine into a dual-fuel engine that injects diesel with a high pressure by common rail direct injection (CRDI) and by injecting CNG at the intake port for premixing. And experiment was progressed for understanding about effect of CNG mixing ratio. The CNG/diesel dual-fuel engine showed equally satisfactory coordinate torque and power regardless of CNG mixing ratio. The PM emission was low at any CNG mixing ratio because of very small diesel pilot injection. In case of NOx and HC, high CNG mixing ratio showed low NOx and HC emissions at low speed. At medium & high speed, low CNG mixing ratio showed low NOx and HC emissions. Therefore, it would be optimized by controlling CNG mixing ratio.

Performance and Emission Characteristics of Dual-fuel(Diesel-CNG) Combustion in a Diesel Engine (디젤엔진에서 경유-CNG 혼합 연소의 성능 및 배기 특성)

  • Ryu, Kyung-Hyun;Park, Jin-Chul;Choi, Kyu-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.132-139
    • /
    • 2010
  • This paper describes an investigation of the performance and emission characteristics of a commercial cylinder direct injection diesel engine operating on natural gas with pilot diesel ignition. Engine tests for variations in the pilot injection timing were performed at an engine speed of 1500 rpm. This study showed that the performance of the dual-fuel diesel engine increased as the engine load increased and as the pilot diesel injection timing angle advanced. The peaks of cylinder pressure, pressure rise rate, and heat release rate all increased while the fuel ignition timing advanced with the pilot injection timing. The engine operation was stable, and the least smoke was produced at a pilot injection timing of $12^{\circ}$ before top dead center. NOx emissions were only exhausted under high-load conditions, and they increased as the pilot injection timing angle advanced.

A Study on the Emission Characteristics of LNG-diesel Dual-fuel Engine for Euro 2 Standard (Euro 2 기준 LNG-경유 혼소엔진의 배출가스 특성에 관한 연구)

  • Cho, Gyu-Baek;Kim, Chong-Min;Kim, Dong-Sik;Kim, Hong-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Heavy duty diesel engine has relatively small portion of whole vehicles due to long drive distance and large engine displacement, but largely influences atmosphere environment. City buses changed to CNG (Compressed Natural Gas) bus with Korea-Japan Worldcup. Heavy duty truck and intercity bus, however, were impossible to use CNG because those kinds of vehicles had long drive distance and CNG station was installed mainly at the around of the bus garage of city. Insulation container storing the natural gas as a liquid makes heavy duty truck and intercity bus possible to use the natural gas. Drive using diesel is possible where is hard to recharge the gas. With LNG (Liquefied Natural Gas), the dependence on oil is largely decreased, PM (Particulate Matter) and NOx which is chronic disadvantage of diesel is remarkably reduced and finally $CO_2$, the representative green house gas, is reduced over 10%.

A Methodology to Evaluate Economic Feasibility by Taking into Account Social Costs from Automobile Exhaust Gases (자동차 배기가스로 인한 사회적 비용을 고려한 경제성 평가 방법론)

  • Cho, A-Ra;Lim, Seong-Rin
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.263-272
    • /
    • 2019
  • Air pollutants have a high impact on everyday life as well as on human health; therefore, new technologies such as low-emission vehicles and add-on systems for air pollutant reduction are needed for our society. However, the environmental benefits and costs of those technologies are not taken into account in existing economic feasibility assessments, which is a barrier that needs to be overcome for green technology to achieve wide dissemination and fast penetration in the market. Thus, this study develops a methodology to assess the economic feasibility of an air pollutant reduction technology by taking into account the social costs from air pollutants and carries out a case study to validate the methodology. Because the social unit costs for air pollutants have not been evaluated yet in South Korea, the methodology uses the social unit costs evaluated for the European Union that are then converted to those for South Korea based on the measuring criteria for vehicle emission gases, parity purchasing price, foreign currency exchange rate, and customer price index. The social unit costs for South Korea are used to assess economic feasibility. A case study was performed to assess the economic feasibility of a dual fuel system using diesel and compressed natural gas by taking into account social costs from air pollutants as well as economic costs. This study could contribute to assessing the true economic feasibility of green technology, projects, and policy related with air pollutant reduction.