• Title/Summary/Keyword: 압축인장강도

Search Result 769, Processing Time 0.027 seconds

Absorption and Strength Properties of Landscape Paving Concrete According to Zeolite Coarse Aggregate Replacement Rate (제올라이트 굵은골재 대체율에 따른 조경포장 콘크리트의 흡수 및 강도 특성)

  • Na, Ok-Pin;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.131-139
    • /
    • 2021
  • This study assessed the use of zeolite with high absorption performance in landscape paving concrete as a substitute for aggregate. The absorption performance and strength properties of paving concrete were investigated according to the replacement rate of the zeolite coarse aggregate, and the mechanical properties were investigated through strength tests. The absorption rate of the zeolite aggregate was 14%, which is 2.5 times higher than that of general aggregate. When zeolite coarse aggregate is applied to paving concrete, the absorption rate increases according to the replacement rate. The absorption rate was 5.2% at a replacement rate of 50%, which was 42% higher than that of general paving concrete. The compressive strength increased to 20% of the replacement rate and decreased at a higher replacement, but all the strengths in the construction standard code were satisfied. The flexural strength satisfied the code up to a replacement rate of 10%, but the strength decreased with increasing replacement rate, and the splitting tensile strength was greater than that of paving concrete using general aggregate up to a 20% replacement rate. Overall, zeolite coarse aggregate can be applied as a substitute.

Experimental Study on the Properties of Strength of the No-Fines Concrete (No-Fines Concrete의 강도특성(强度特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Seong Wan;Sung, Chan Yong;Min, Jeong Kie
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.373-383
    • /
    • 1987
  • No-fines concrete is concrete from which the fine aggregate fraction has been omitted. The concrete so formed, consisting only of coarse aggregate, cement, and water, has large voids uniformly distributed through its mass. This study was performed to obtain the basic data which can be applied to the use of no-fines concrete. The data was based on the properties of no-fines concrete depending upon various mixing ratios. The results obtained were summarized as follows. 1. Test result of the consistency, suitable water-cement ratio was increased with the increasing of mixing ratio. 2. At the suitable water-cement ratio, the highest strengths were showed. But it gradually was decreased with the increasing of mixing ratio and strengths are considerably lower than that of conventional portland cement concrete. 3. The relations between compressive and tensile strength were highly singnificant as a straight line shaped. The strength ratio was decreased with the increasing of mixing ratio and considerably lower than of conventional portland cement concrete. 4. Bulk density was decreased with the increasing of the mixing ratio, and was similar to that of the conventional portland cement concrete at mixing ratio 1:4. 5. The relations between strength and bulk density were highly significant as a straight line shaped. The decreasing ratio of strengths was higher than that of bulk density.

  • PDF

Simplified Design Equation of Splice Length of Deformed bars in Compression (압축을 받는 이형철근의 단순화된 이음 설계식)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.33-34
    • /
    • 2010
  • A compression lap splice becomes an important issue due to development of ultra-high strength concrete. Based on the basic form of design equations for development lengths of deformed bars and hooks in tension, simplifed design equation of deformed bars in compression was proposed using regression analyses.

  • PDF

A study on the characteristics of multi load transfer ground anchor system (다중정착 지반앵커의 하중전달 특성에 관한 연구)

  • Kim, Ji-Ho;Jeong, Hyeon-Sic;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.25-50
    • /
    • 2014
  • In order to identify a load transfer mechanism of ground anchors, the behavior of multi load transfer ground anchor systems was investigated and compared with those of compression type anchors and tension type anchors. Large scale model tests were performed and stress-strain relationships were obtained. The load transfer mechanism of ground anchors was also investigated in the field tests. Finally, numerical analyses to predict the load-displacement relationships of anchors were conducted. It is concluded that the load transfer characteristics of MLT anchors are mechanically much more superior in the pull-out resistance effect than those of existing compression and tension type anchors. From the results of research work, we could suggest that the max pull-out capacity of anchor capacity to each the soil condition. Also, the MLT anchors can be used to achieve both structural enhancement and economic construction in earth retaining or supporting structures.

Effects of Shrinkage Reducing Agent (SRA) Type and Content on Mechanical Properties of Strain Hardening Cement Composite (SHCC) (수축저감제의 종류 및 혼입률에 따른 변형경화형 시멘트복합체의 역학적 특성)

  • Han, Seung-Ju;Jang, Seok-Joon;Khil, Bae-Su;Choi, Mu-Jin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • This research investigates the effects of shrinkage reducing agent (SRA) on the mechanical behavior of strain-hardening cement composite (SHCC). SHCC material with specified compressive strength of 50 MPa was mixed and tested in this study. All SHCC mixes reinforced with volume fraction of 2.2% polyvinyl alcohol (PVA) fiber and test variables are type and dosage of shrinkage reducing agents. The shrinkage reducing materials used in this study are phase change material as the thermal stress reducing materials that have the ability to absorb or release the heat. The effect of SRA was examined based on the change in length caused by shrinkage and hardened mechanical properties, specially compressive, tensile and flexural behaviors, of SHCC material. It was noted that SRA reduces change in length caused by shrinkage at early age. SRA can also improve the tensile and flexural strengths and toughness of SHCC material used in this study.

Wood Quality and Strength Properties of Old Structural Members (목조건축 해체 고목재의 재질특성 및 강도성능)

  • Hwang, Kweonhwan;Park, Byeongsu;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.36-44
    • /
    • 2008
  • It is necessary to assess wood quality and strength of the clear specimens from used members in old wooden structures for the reuse of old members on the same structure or a new structure. Wood species classification by microscope observation of each wood member that was used in truss cord and temple, and several physical and strength tests by the specification of present KS standards were conducted to compare with some references. From the comparison of strengths with references, Korean larch gives relatively better wood quality and mechanical properties than other wood species. No significant deterioration of cell wall was found by microscopic observation for the sound wood part that was selected visually. Tensile specimens with 3 mm in thickness on the middle span showed greater strength than 5 mm thick specimens, which explains that dimension of tensile specimen should be examined for evaluating precise tensile strength properties. Other tests, compression, shear, and bending, are adoptable for each strength properties. Test methods for the evaluation of basic strengths and fastener connections for old wood species should be further examined.

A Study on the Strength Characteristics and Rebound Ratio with Respect to Injection Pressure of Shotcrete (숏크리트의 강도 특성과 분사압력에 대한 리바운드율 연구)

  • Jeon, Jun Tai;Moon, In Gi;Lee, Yang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.115-122
    • /
    • 2019
  • Steel Fiber Reinforced Wet-type Shotcrete improves the quality and stabilizes the tunnel by increasing the shear strength of the natural ground by constructing the concrete which attaches the fresh concrete to the predetermined position from the nozzle. The Steel Fiber Reinforced Wet-type Shotcrete improves and reinforces the strength and dynamic behavior characteristics of concrete to suppress the generation and growth of local cracks by increasing the tensile resistance ability. In addition, Steel Fiber Reinforced Wet-type Shotcrete is a shotcrete that improves tensile strength, bending strength, and crack resistance by dispersing discontinuous short steel fibers evenly in concrete. In this study, compressive strength test and bending strength test of shotcrete of NATM tunnel were measured and rebound reduction rate was measured by varying shotcrete putting pressure to 900 RPM, 1,000 RPM, and 1,100 RPM. Therefore, the data that can be applied to domestic NATM tunnel construction are presented.

The Piezoelectric Degradation and Mechanical Properties in PZT Ceramics with $MnO_2$ Addition ($MnO_2$를 첨가한 PZT 세라믹스의 압전열화 및 기계적 특성)

  • 김종범;최성룡;윤여범;태원필;김송희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.257-264
    • /
    • 1997
  • The aim of this study was to investigate the degradation of piezoelectric properties with compressive cy-clic loading, the change in bending strength before and after poling treatment and fracture strength in MPB depending on the amount of MnO2 addition. The MPB with 0.25 wt.% MnO2 showed the best resistance against the piezoelectric degradation with compressive cyclic loading. Bending strength increased when pol-ing and loading directions are parallel, however decreased when poling and loading directions are per-pendicular each other. Because, during poling treatment, compressive residual stress is generated in the pol-ing direction but tensile residual stress in the perpendicular direction to poling direction.

  • PDF

Statistical Characteristic of Mechanical Properties of Concrete (콘크리트 역학적 성질의 통계적 특성)

  • Kim, Jee-Sang;Shin, Jeong-Ho;Choi, Yeon-Wang;Moon, Jea-Heum;Kim, Joo-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.657-660
    • /
    • 2008
  • The mechanical properties of concrete such as compressive strength, tensile strength, and modulus of elasticity, are considerably influenced by various factors including locality. The material property prescriptions in national concrete design codes should reflect them. In Korea, they have not been studied systematically yet. A new performance-based design code is being prepared in Korea as a government-supported project and it has a plan to make new material prescriptions adopting domestic research results. As a starting point for the research on material properties, the statistical characteristics of mechanical properties of concrete are studied. In this paper, a probabilistic model of compressive strength, relationship between compressive strength and splitting tensile strength and compressive strength and elastic modulus are proposed based on experimental data.

  • PDF

Mechanecal Prolperties of Concerte as the Condition of Contained Water (함수상태에 따른 콘크리트의 역학적성상)

  • 김인수;오창희
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.127-134
    • /
    • 1992
  • Generally speaking, the internal moisture of concrete is mainly distributed in inner part and concrete surface which is exposed are dned according to influence of temperature and humidity. So, the properties which are compressive strength, modular elasticity, and volume change are different at each part even in same concrete. This is because moisture distribution is changed according to the evaporation and move ment of moisture, exist in the inner porosity of concrete. Therefore, it is necessary that we investigate the properties of concrete according to moisture distribution. The purpose of this study is investigating correlation between the moisture content and mechanical properties in concrete. Compressive and tenslle strength decrease according to increasing moisture content, but modular elas ticity increase. Those increasing or decreasing ratio at drying ratio 100% (absolute dries) is as follows in comparative of drying ratio 0 % (saturated condition).tion).