• Title/Summary/Keyword: 압축기 과열도

Search Result 27, Processing Time 0.03 seconds

Performance analysis for load control of R744(carbon dioxide) transcritical refrigeration system using hot gas by-pass valve (핫가스 바이패스 밸브를 이용한 R744용 초임계 냉동사이클의 부하제어에 대한 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2189-2194
    • /
    • 2009
  • The automatic hot gas by-pass technique is applied to control the capacity of refrigeration and air-conditioning system when operating at part load. In the scheme, the hot gas from the compressor is extracted and injected into the outlet of an evaporator through a hot gas by-pass valve. Thus, In this paper, the hot gas by-pass scheme for CO2 is discussed and analyzed on the basis of mass and energy conservation law. A comparative study of the schemes is performed in terms of the coefficiency of performance (COP) and cooling capacity. The operating parameters considered in this study include compressor efficiency, superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : the superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

The Characteristic Study of Capacity Control of an Industrial Cooler Using an Invertor Compressor with Varing the Ambient Temperatures (인버터 압축기를 채용한 산업용 수냉각기의 외기온도 변화에 따른 용량제어 특성)

  • Baek, Seung-Moon;Moon, Choon-Geun;Kim, Eun-Pil;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.238-243
    • /
    • 2011
  • The ambient temperature of the experimental conditions changes by varying the speed of the compressor and the electronic expansion valve opening. The effects of changing valve opening to the entire system has been investigated. The results show that the ambient temperatures of $35^{\circ}C$ and $30^{\circ}C$ controlled at 30Hz must be avoided. The capacity control range of the control compressor with changing speed is about 43~100% at $35^{\circ}C$, 43~100% at $25^{\circ}C$ and 48~100% at $10^{\circ}C$, respectively. The results show the capacity control range decreases with decreasing ambient temperature.

A numerical study on the performance of a heat pump assisted dryer (열펌프 건조기의 성능에 관한 수치해석)

  • Kim, I.G.;Park, S.R.;Koh, J.Y.;Kim, Y.J.;Kim, J.G.;Yim, C.S.
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.91-104
    • /
    • 1998
  • This study carried out a numerical analysis on a heat pump assisted dryer using HFC134a. Under the constant degree of superheat and that of subcooling, we analyzed the performance of heat pump assisted dryer with varying an air mass velocity, bypass air ratio, compressor speed and an inlet bulb temperature of dryer. Simulation results were compared with experimental results, so they were maximally agreed in the range of 10%. There was the proper bypass air ratio with varying an air mass velocity. As for the effect of SMER having the inlet temperature $35^{\circ}C$ and compressor speed 1360rpm, bypass air ratio was 30% at the front velocity 0.5kg/s, 40% at the front velocity 0.7kg/s and 50% at the front velocity 0.9kg/s and 1.1kg/s. As the compressor speed was increased, SMER decreased and COP increased. As the inlet bulb temperature was increased, SMER and COP decreased.

  • PDF

Performance Analysis of an Ammonia(R717) and Carbon Dioxide(R744) Two-Stage Cascade Refrigeration System ($NH_3-CO_2$를 사용하는 이원 냉동 시스템의 성능 분석)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, cycle performance analysis of $NH_3-CO_2$(R717-R744) two-stage cascade refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in the ammonia(R717) high temperature cycle and the carbon dioxide low temperature cycle. The main results were summarized as follows : The COP of two-stage cascade refrigeration system increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of two-stage cascade refrigeration system decreases with the increasing condensing temperature, but increases with the increasing evaporating temperature. And the COP of two-stage cascade refrigeration system increases with increasing the compressor efficiency. Therefore, superheating and subcoolng degree, compressor efficiency, and evaporating and condensing temperature of $NH_3-CO_2$(R717-R744) two-stage cascade refrigeration system have an effect on the COP of this system.

A Study on the Superheat Control of a Tandem-type Airconditioner by Using a Variable Speed Outdoor Fan (변속실외기펜을 사용한 텐텀형냉방기의 과열도제어에 관한 연구)

  • Kim, Jae-Hyun;Han, Do-Young
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.474-479
    • /
    • 2005
  • For the safe operation of an air conditioner, the liquid car η 'over to compressors should be minimized and compressors should be operated in the specified region of suction and discharge pressures recommended by compressor manufactures. In this study, a capillary assisted tandem-type airconditioner was considered. A variable speed outdoor fan was used to control operating points of the system. Test results showed the possibilities to move system operating points to the safe region by controlling the speed of an outdoor fan.

  • PDF

Design of Multi-Fuzzy Controller Using Genetic Algorithms for Multi-HVAC System (유전자 알고리즘을 이용한 Multi-HVAC 시스템에 대한 Multi-Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeong-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.303-305
    • /
    • 2006
  • 본 논문은 HVAC(heating, ventilating, and air conditioning) 시스템의 효율성과 안정성에 기초하여, 과열도와 저압을 제어하는 Multi Fuzzy 제어기 설계를 제안한다. HVAC 시스템은 Compressor(압축기), Condenser(응축기), Evaporator(증발기), Expansion Valve(확장 밸브) 로 구성되며, 각각의 기기에 대한 제어가 독립적으로 이루어져 있다. 기존의 제어가 한 제어기를 사용한 단일방식으로 이루어지다보니 HVAC 시스템의 특성인 냉매의 상태가 달라지면 시스템 전반적으로 그 영향이 파급되는 부분까지 고려를 해 주지 못하고, 제어기의 성능이 효율적이고 안정적이지 못했다. 본 논문에서는 HVAC 시스템의 효율과 안정도에 결정적인 영향을 미치는 파열도와 저압을 제어하기 위해, 비선형성이 강하고 불확실하며 복잡한 시스템을 쉽게 제어할 수 있는 Fuzzy 제어기를 구성하여, 3대의 Expansion Valve 와 1대의 Compressor 에서 동시에 제어하는 Multi 제어기를 설계한다. 제안된 Fuzzy 제어기는 이산형 lookup_table 방식과 연속형 간략추론 방식을 사용하여 제어기를 설계하고, 유전자 알고리즘(GAs)을 이용하여 최적의 Fuzzy 제어기의 환산계수를 구한다. 그리고 시뮬레이션 결과를 통해 이산형 lookup_table 방식과 연속형 간략추론 방식의 각각의 제어기를 사용한 결과를 비교한다.

  • PDF

Performance Analysis of 2-Stage Compression and 1-Stage Expansion Refrigeration System using Alternative Natural Refrigerants (암모니아 대체 자연냉매를 이용하는 2단압축 1단팽창 냉동시스템의 성능예측)

  • Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.42-47
    • /
    • 2012
  • In this paper, alternative natural refrigerant R290(Propane), R600(Butane), R717(Ammonia), R1270(Propylene) for freon refrigerant R22 were used working fluids for 2-stage compression and 1-stage expansion refrigeration system. The operating parameters considered in this study included evaporation temperature, condensation temperature, subcooling degree, superheating degree, mass flow rate ratio of inter-cooler. The main results were summarized as follows : The COP of 2-stage compression and 1-stage expansion refrigeration system increases with the increasing subcooling degree and mass flow rate ration of inter-cooler, but decreases with the increasing evaporating temperature, condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of 2-stage compression and 1-stage expansion refrigeration system using natural refrigerants have an effect on COP of this system. The COP of natural refrigerants was higher than the COP of freon R22 in this study, so points to be considered are the security, the attached facilities for natural refrigerants than COP.

Exergy Analysis of R744-R404A Cascade Refrigeration System (R744-R404A용 캐스케이드 냉동시스템의 엑서지 분석)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1001-1008
    • /
    • 2011
  • This paper describes an analysis on performance and exergy of R744-R404A cascade refrigeration system with internal heat exchanger to optimize the design for the operating parameters of this system. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R744 low- and R404A high- temperature cycle, respectively. The main results are summarized as follows : As the evaporation temperature of cascade heat exchanger increases, the COP of R404A high-temperature cycle increases. But the COP of R744 low-temperature cycle decreases, and the COP of total cascade cycle is almost constant. As cascade evaporation temperature increase, the exergy loss in the R404A condenser and the R744 internal heat exchanger is the largest and the lowest among all components, respectively. Therefore, the exergy loss in the condenser and compressor of R404A must be decreased to enhance the COP of R744-R404A cascade refrigeration system.

Control of Compressor and Electronic Expansion Valve for a Tandom-type Air-conditioner (텐덤형 냉방시스템의 압축기와 전자팽창밸브 제어)

  • Jung, Nam-Chul;Han, Do-Young
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.469-473
    • /
    • 2005
  • Capacities of a tandom-type air-conditioner may be modulated by turning on/off multiple compressors and adjusting positions of a electronic expansion valve. In this study. control algorithms for compressors and a electronic expansion valve were developed by using fuzzy’ logics. There algorithms were implemented in a test lab and proved to be effective for the control of indoor air temperature and superheat temperature.

  • PDF