• Title/Summary/Keyword: 압축강도 180MPa

Search Result 30, Processing Time 0.024 seconds

Evaluation of Properties of 80, 130, 180 MPa High Strength Concrete at High Temperature with Heating and Loading (고온가열 및 하중재하에 따른 80, 130, 180 MPa 초고강도콘크리트의 역학적특성평가)

  • Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Tae-Gyu;Lee, Seong-Hun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.613-620
    • /
    • 2013
  • Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. Because of this, standards and researches on the degradation of the mechanical properties of concrete at high temperatures have been presented. However, research data about the state that considering the loading condition and high-strength concrete is not much. Therefore, this study evaluated the high-temperature properties of high-strength concrete by loading condition and elevated temperature. The stress-strain, strain at peak stress, compressive strength, elastic modulus, thermal strain and the transient creep are evaluated under the non-loading and $0.25f_{cu}$ loading conditions on high strength concrete of W/B 12.5%, 14.5% and 20%. Result of the experiment, decrease in compressive strength due to high temperature becomes larger as the compressive strength increases, and residual rate of elastic modulus and compressive strength is high by the shrinkage caused by loading and thermal expansion due to high temperature are offset from each other, at a temperature above $500^{\circ}C$.

Analysis of Influential Factors on Compressive Strength of Concrete Specimens Obtained from a Drilled Shaft Construction Site (현장타설말뚝 콘크리트 공시체 압축강도 데이터 분석을 통한 강도 영향인자 분석)

  • Lee, Kicheol;Chung, Moonkyung;Kim, So Yeun;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.37-47
    • /
    • 2015
  • Recently, the quality of drilled shafts concrete has been improved significantly due to the improved concrete performance, upgraded concrete materials, and better management of on-site constructions. Despite the development, current conventional quality management on concrete constructions is still used without any criticism. In this study, compressive strength test results of more than 200 concrete specimens after 7 and 28 days of curing were collected from one site at Songdo area of Incheon. The concrete specimens were prepared from the concrete with aggregate maximum dimensions of 25 mm, target compressive strength of 40 MPa, and slump of 180 mm. Influential factors including concrete temperature, air temperature, amount of slump, amount of air, amount of salinity on concrete specimen were also examined. The database was established from collected information and statistical analyses were performed. Analyzed results confirm that "the difference between concrete temperature and air temperature" has the largest impact on the compressive strengths of specimens at the durations of 7 and 28 days.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

An Experimental study on bonding performance evaluation of Bi-compressive strength concrete according to surface preparation (접착 면 처리 방법에 따른 이종 압축강도 콘크리트의 접착성능 평가에 관한 실험적 연구)

  • Kim, Min-Seong;Lim, Hee-Seob;Lee, Han-Seung;Yang, Won-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.282-283
    • /
    • 2014
  • An active study on UHPC, which has been recently used in high-rise building and bridges, is in progress. However, research on adhesion strength of normal concrete and UHPC is required to be studied due to the lack of information. In this study, experimental research progress for adhesion strength (shear strength of adhesive surface) evaluation of Bi-compressive strength concretes (UHPC, Normal concrete) is proceeded. First, specimens using glue are produced and surface treatment methods of concrete bonded section are considered. Second, Direct Shear test is applied on concrete bonded section of UHPC (80~180MPa) and Normal Concrete (NC). As a result of this study, it is confirmed that bond strength is deteriorated as the difference of intensity ration of NC and UHPC increases.

  • PDF

Spalling of Concrete with Compressive strength and heating rates (압축강도 및 가열속도에 따른 콘크리트의 폭렬성상)

  • Choe, Gyeong-Choel;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Young-Wook;Hwang, Ui-Chul;Yoo, Jae-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.43-44
    • /
    • 2015
  • In this study, spalling property were evaluated from concrete with compressive strengths of 30MPa, 90MPa, 180MPa, applied with fast heating condition(ISO-834 standard heating curve) and slow heatign condition(1℃/min). As a result, the spalling property of concrete was shown differently with compressive and heatign rate. And It could be separated three as non spalling, surface spalling and explosive spalling.

  • PDF

Flowability and Compressive Strength of Cementless Alkali-Activated Mortar Using Blast Furnace Slag (고로슬래그를 사용한 무시멘트 알칼리 활성 모르타르의 유동성과 압축강도)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin;Jeon, Yong-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. In this study, we investigated the influence of alkali activator and superplasticizer on the flowability and compressive strength of the alkali-activated mortar in oder to develop cementless alkali-activated concrete using blast furnace slag. In view of the results, we found out that the type and mixture ratio of alkali activator, the type and adding order of superplasticizer results to be significant factors. When cementless alkali-activated mortar using blast furnace slag manufactured with 1:1 the mass ratio of 9M NaOH and sodium silicate, and added superplasticizer before alkali activator in the mixer, we can be secured workability with 180 mm of flow during 1 hours and compressive strength of about 50 MPa under $20^{\circ}C$ curing condition at age of 28days.

  • PDF

Effect of Compressive Strength and Curing Condition on the Direct Tensile Strength Properties of Ultra High Performance Concrete (압축강도 및 양생조건에 따른 초고성능 콘크리트의 직접인장강도 특성)

  • Park, Ji Woong;Lee, Gun Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.175-181
    • /
    • 2017
  • The purpose of this study is evaluating the characteristics of tensile strength of UHPC and examining tensile performance of notched specimens by direct tensile test. For test variables, 120, 150, and 180MPa of target design standard strength were aimed at. With general water curing and $90^{\circ}C$ high temperature steam as curing conditions, the properties were reviewed. Overall, it was represented that the specimens of notch-type direct tensile strength concrete was effective in inducing central cracks compared with existing direct tension specimens. Through this, it was judged that data construction with high reliability was possible. Above all, in a graph of direct tensile strength and strain, in the case of steam curing at high temperature, there was great difference of initial tensile strength compared with water curing. As passing of ages, an aspect that the difference gradually decreased was shown. Maximum tensile strength was found to increase steadily with increasing age for all target design strengths in water curing, in the case of steam curing, the tendency to increase significantly due to the initial strength development effect at 7 days of age. The initial crack strength increases with age in case of underwater curing, in the case of steam curing, it was higher than that of water curing in 7 days, while the strength of 28 days was lowered. In this part, it is considered necessary to examine the arrangement condition of the steel fiber.

Strength Prediction Equations for High Strength Concrete by Schmidt Hammer Test (슈미트 해머 시험에 의한 고강도 콘크리트의 강도 추정식)

  • Kwon, Young-Wung;Park, Song-Chul;Kim, Min-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.389-395
    • /
    • 2006
  • For the assessment of exsiting concrete structures, it is important to get the real strength of concrete. The load test or core test has many problems due to cost time, easiness, structural damage, and reliability and so on. Thus, various non-destructive test and statistical analysis techniques for strength assessment have been developed. As a result the real strength of concrete can be obtained by both direct and indirect test. In this study, a series of experimental tests of core strength and Schmidt hammer tests on 3, 7, 14, 28, 90, 180, 365, and 730 days' were done for predicting the compressive strength of high strength concrete with 65.0MPa of 28-days' strength. Each experimental results was analyzed by simple regression analysis. Then, reliability level and error rate between the proposed equations and the existing ones was examined. However, the application of the exsisting equations was inadequate to high strength concrete, because they were conducted under normal strength concrete. Therefore, the following compressive strength equations were proposed for predicting the compressive strength of high strength concrete by Schmidt hammer test. The proposed equations by Schmidt hammer test are as follows.

Thermal Strain Properties of Ultra High Strength Concrete according to the Compressive Strength (압축강도에 따른 초고강도 콘크리트의 열변형 특성)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Hwang, Eui-Chul;Lee, Bo-Kyeong;Seo, Won-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.24-25
    • /
    • 2016
  • In this study, the thermal strain of high strength concrete with the compressive strength of 80, 130, 180MPa were measured under 25% of compressive strength loading condition. As results, it is considered that decline of the elastic modulus and shrinkage strain of high strength concrete become grater at the elevated temperatures.

  • PDF

50MPa Ternary Non-Cement Mortar Strength Development Mixing with Hybrid Fibers Cured by Room Temperature (상온양생에 의한 하이브리드 섬유를 혼입한 50MPa급 3성분계 무시멘트 모르타르 강도발현)

  • Cho, Sung-Won;Cho, Sung-Eun;Kim, Young-su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.179-180
    • /
    • 2020
  • CO2 emissions are caused by cement manufacturing process. To solve this problem construction industry are using industrial by-products to replace cement. In this study, three different industrial by products were used and mixed with hybrid fibers to enhance bond strength. As the result, Regardless of the mixing rate of silica fume, the compressive strength of the ternary non cent mortar was higher than that of OPC and binary. And mixed hybrid fibers cured by room temperature compressive strength were 23% higher than those without hybrid fibers.

  • PDF