• Title/Summary/Keyword: 압축강도 시험

Search Result 1,679, Processing Time 0.026 seconds

Nondestructive Assessment of Compressive Strength of Construction Materials Using Impact-Echo Response Signal (임팩에코 응답신호를 적용한 건설재료 비파괴 압축강도 산정)

  • Son, Moorak;Kim, Moojun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.17-21
    • /
    • 2017
  • This paper is to grasp the use of impact-echo response signal induced from impacting an object for the assessment of compressive strength of construction materials nondestructively and to propose the test results. For this study, an impact device was devised and used for impacting an object by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Concrete test specimens which had been mixed for different strengths were tested and the impact echo response signal was measured for each test specimen. The total sound signal energy which is assessed from integrating the impact-echo response signal was compared with the directly measured compressive strength for each specimen. The comparison showed that the total sound signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of construction materials can be assessed nondestructively using total sound signal energy which is assessed from integrating the impact-echo response signal induced from impacting an object.

A Pilot Study on Nondestructive Assessment of Compressive Strength Using Impact Force Response Signal (충격력 응답신호를 이용한 비파괴 압축강도 산정에 관한 기초연구)

  • Son, Moorak;Choi, Yoonseo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.5-9
    • /
    • 2019
  • This paper is to provide the results of a pilot study of the usability and possibility of impact force response signal induced from impacting an object for the assessment of compressive strength of various materials (rock, concrete, wood, etc.) nondestructively. For this study, a device was devised for impacting an object and measuring the impact force. The impact was carried out by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Wood and rock test specimens for different strengths were tested and an impact force response signal was measured for each test specimen. The total impact force signal energy which is assessed from integrating the impact force response signal was compared with the directly measured compressive strength for each specimen. The comparison showed that the total impact force signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of construction materials can be assessed nondestructively using total impact force signal energy which is assessed from integrating the impact force response signal induced from impacting an object.

Mechanical Properties of External Thermal Insulation Composite System with Quasi-Non-Combustible Performance (준불연 외단열시스템의 역학적 특성에 관한 연구)

  • Choi, Ki-Sun;Ha, Soo-Kyung;Oh, Keun-Yeong;Park, Keum-Sung;Ryu, Hwa-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.507-518
    • /
    • 2021
  • The application of an adhesive calcium carbonate-based hybrid insulation board with quasi-combustibility in the external thermal insulation composite system(ETICS) ensures effective thermal performance and fire safety. This study aimed to conduct a mechanical test of the quasi-non-combustible hybrid insulation board as well as its constituent materials to obtain the basic data for the structural design of the adhesive ETICS. Test specimens were fabricated based on domestic and foreign test standards to examine and evaluate their tensile, compressive, flexural, and shear strengths. The strength characteristics of the quasi-non-combustible hybrid insulation board were identified from the test results, which verified that the minimum required physical properties suggested by the current KS M ISO 4898 were met. Furthermore, the quasi-non-combustible ETICS used in this study was found to be suitable for use as an external insulation system for walls unless subjected to continuous gravity load, such as a heavy exterior finish.

A Study Of Practical For Eco-Grouting Materials (친환경 그라우팅 재료를 통한 현장 적용성 연구)

  • Moon, Kim-Hak;Jang, Kyung-Jun;Hur, Won;Hur, Hyung-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1253-1257
    • /
    • 2010
  • 그라우팅은 건설공사에서 지반의 갈라진 틈이나 공동, 공극 등에 적절한 충전재를 압력을 이용하여 주입하는 것으로, 굴착공사 시 누수방지와 불안정한 지반의 보강을 위하여 광범위하게 사용되고 있다. 가장 많이 사용되고 있는 그라우팅 주입재의 재료로는 물유리계를 주재료로 사용하는 약액주입공법이 많이 사용되어지고 있다. 기존의 물유리계 재료를 사용할 경우 발생하는 용출현상 및 강도저하를 보완하기 위하여 가소성을 부과한 무기질계 재료ECG(Eco Clean Grouting)를 사용하여, 강도 및 내구성이 우수하고 주입재의 용출 현상이 발생하지 않아 환경오염 문제가 거의 없는 영구적인 차수 및 보강에 적합한지와 친환경적 특성을 확인한다. 본 연구는 가소성 무기질계 재료인 ECG(Eco Clean Grouting)재료를 사용하여 현재 많이 사용되는 재료인 물유리계 재료로 일축압축강도, 체적변화, 내구성 평가, 투수시험, 어독성 시험, 용탈시험등을 수행하여 비교 분석 하였다. 일축압축 시험결과 재령 28일 강도는 ECG가 물유리재료에 비해 크게 발현되었고, 내화학성시험 결과 ECG의 길이변화율이 거의 없는 것으로 내화학성에서 강점을 보였다.

  • PDF

Shear Strength and Deformation Characteristics of Lightweight Soils Mixed with Tire Powder (타이어 가루를 섞은 경량혼합토의 전단강도와 변형특성)

  • Yoon, Gil Lim;Yoon, Yeo Won;Ahn, Kwang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.259-265
    • /
    • 2012
  • This paper investigates engineering characteristics of lightweight soils mixed with air foam and tire powder. Lightweight soils could be used as foundation materials, back-fills of reducing vibrating or abutment, and so on. Unconfined and triaxial compression tests were carried out to analyze strength and deformation characteristics of lightweight soils by changing target moist unit weight and cement contents. In comparison with strength characteristics of two different kinds of lightweight soils with same most unit weights ($13kN/m^3$), unconfined compression tests showed similar compressive strength, however, triaxial compression tests showed that compressive strength of lightweight soils mixed with waste tire powder was relatively larger strength than that of lightweight soils mixed with air foam because of elasticity of waste tire powder. Also, unconfined and triaxial compressive strengths of most of lightweight soils increase with increases of moist unit weight and cement contents. However, the strength of lightweight soils mixed with air foam under $11kN/m^3$, when moist unit weight exceeds a certain cement contents, decreases even though cement contents increase because of the effect in a void gap of air foam.

Stress Block of High Strength Polymer Concrete Flexural Members (고강도 폴리머 콘크리트 휨부재의 응력블럭)

  • 김관호;김남길;연규석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.638-644
    • /
    • 2002
  • The stress-strain relationship of polymer concrete flexural member was evaluated using C-shaped polyester concrete specimen, the compressive strength of which is 1400 kgf/$\textrm{cm}^2$. Eccentric compression test was performed to estimate the parameters, ${\alpha}$, ${\beta}$1, ${\gamma}$ for equivalent rectangular stress block. The ultimate moment strength ware obtained from the bending test on reinforced polymer concrete beams which were prepared with S different tensile steel ratios with a shear span ratio of 4.0. These values were compared with theoretical ultimate moment strengths, which were obtained using the parameters ${\alpha}$=0.61 and ${\beta}$1=0.73 from stress-stain curves of C-shaped specimens. The results showed that, when tensile steel ratio was over 0.50 $\rho$b, the experimentally obtained moment strengths were well matched with theoretically calculated values. In order to develop accurate criteria for polymer concrete flexural members, however, many other expermental studies for parameter determination are necessary using C-shaped specimens which have various compressive strengths and different sizes.

A Study on Unconfined Compressive Strength of CLSM with Paper Sludge Ash (제지애쉬가 적용된 CLSM의 일축압축강도 특성에 관한 연구)

  • Park, Jeong-Jun;Lee, In-Hwan;Shin, Eun-Chul;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.253-262
    • /
    • 2019
  • This paper described the evaluation results on unconfined compressive strength characteristics of CLSM with paper sludge ash, in order to develop a CLSM that can prevent sewer pipe damage. The flowability test and the unconfined compressive strength test were performed according to mix design condition of CLSM. The flowability test result showed that the water content, which can satisfy the flowability criteria, was 24% to 32% according to the mix design condition. The results of unconfined compressive strength test showed that the strength incremental ratio was high between 1 and 7 days of curing time, and the strength at this time was more than about 50% of the strength at 28 days of curing time. The strength of CLSM was greatly influenced by fly ash. However, it was analyzed that the mixture of paper sludge ash is required when the reference strength of CLSM is considered. Although the strength of the high cement ratio was higher than that of the low cement, a cement ratio of 5% would be a reasonable mix design condition of CLSM.

Study on Development of a Carton Box for Cold-chain Distribution of Chinese Cabbage (저온유통용 배추 포장상자 개발에 관한 연구)

  • Lee, W.O.;Yun, H.S.;Lee, D.H.;Chung, H.;Cho, K.H.;Kim, M.S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.02a
    • /
    • pp.329-334
    • /
    • 2003
  • 배추의 포장상자를 예냉ㆍ저온유통에 적합한 구조로 개선하기 위하여 3-4포기용 골판지 상자를 T11형 표준 팔레트에 적재율이 96%이상 되게 제작하여 고습조건에서도 안전하게 배추를 보호할 수 있는 상자구조를 찾기 위한 수직압축강도시험과 냉각성능 및 예냉후 품질 변화에 대한 시험을 실시하였다. 가. 배추의 저온유통에 사용하는 골판지포장상자는 개공율을 5.4%로 하고, 포장상자 형태를 접음식 형태로 하는 것이 예냉속도 및 예냉균일도에서 유리하고, 저장후 수직압축강도에서는 브릿스박스에 비하여 낮게 나타났지만, 안전압축강도 이상의 압축강도를 나타내었고 제작단가도 저렴하였다. 나. 예냉 후 저장 중 품질변화는 배추 줄기의 절단력을 측정한 결과 개선된 포장상자에서 유통기한을 6-7일정도 연장시킬 수 있는 것으로 나타났다.

  • PDF