• Title/Summary/Keyword: 압축/흡수

Search Result 253, Processing Time 0.029 seconds

Coting Structure (도공층의 구조)

  • 이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.2
    • /
    • pp.84-98
    • /
    • 2002
  • 도공층의 표면과 내부의 공극구조는 도공지에서 중요한 광학적 성질과 인쇄적성에 밀접한 관계가 있다. 이러한 공극은 도공액이 건조됨에 따라 자연적으로 형성되고 공극의 크기와 용적은 도공액의 조성, 원지의 사이즈도, 건조 속도 및 칼렌더 처리 조건 등에 의해 영향을 받는다. 공극구조는 원지의 흡수에 의해 카드 하우스(card house)형 태의 케이크(cake)층의 형성과 바인더 이동(binder migration) 때문에 생성되는 시점에서 이미 두께방향에서 불균일하게 된다. 도공층 표면의 평활도와 백지광택을 향상시키기 위하여 칼렌더 처리를 행하는데 이 때 도공층 표층의 큰 공극이 압축되어 치밀화현상이 일어나, 공극구조는 한층 더 불균일하게 된다.

A Study on Fiber Reinforced Cement using PVA and Carbon Fiber (PVA와 탄소섬유를 이용한 섬유강화시멘트에 관한 연구)

  • 김민영;이준석;김종원;이동률
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.67-69
    • /
    • 2003
  • 콘크리트는 경제성과 압축강도, 내구성 및 강성 등의 우수한 물성을 가지고 있으나 인장, 휨 및 충격강도가 낮고 에너지 흡수능력이 작아 취성적이며 균열에 대한 저항성이 작은 단점을 가지고 있다. 이러한 단점을 개선하기 위해서 각종 섬유를 콘크리트에 분산시켜 만든 섬유보강시멘트(FRC : Fiber Reinforced Cement)의 개발 및 이용이 활발히 진행되고 있다. PVA 섬유는 우수한 선형성, 입체구조의 간략함과 규칙성, 고결정성 그리고 우수한 접착성을 가지며, 유기 고분자로는 유일하게 PH 13.5이상의 격렬한 알칼리 조건에서도 거의 손상되지 않는 우수한 내알칼리성을 가지고 있다. (중략)

  • PDF

열교환기의 가용 에너지 최대전달 조건

  • 정평석;김창욱;김효경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.907-911
    • /
    • 1990
  • 본 연구에서는 비열이 일정하고 초기온도가 주어진 열원으로부터, 일정한 열 전달 용량의 열교환기를 사용하여 최대의 에너지를 전달시키기 위한 조건을 구해 보기 로 한다. 즉, 저온유동은 고온의 열원유동과 대항류로서 열교환하며 위치에 따라 저 온유체의 온도가 가역 단열압축 또는 팽창에 의하여 임의로 조절될 수 있는 일반적인 경우에 대하여, 저온유체가 최대의 가용 에너지를 흡수하기 위한 온도분포를 변분법 문제로서 해석하고 그에 다른 부수조건들을 검토하고자 한다.

장기 노출된 탄소 콘크리트의 전기적 특성

  • 김종훈;김찬오;손기상
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.77-81
    • /
    • 2002
  • 콘크리트에 탄소를 혼합하여 제작하면 탄소자체의 흡수성질이 있어 배합콘크리트에 밀실하게 배합되기가 쉽지 않으나 일단 밀실하게 제작되면 압축강도가 크게 개선되는 것으로 전기$\cdot$전도에 큰 성능개선을 할 수 있는 것으로 보여진다. 콘크리트에 전선을 매입하여 그 특성을 개선하는 등 해외 및 국내 연구들이 진행되고 있다. 본 연구에서는 기구 매입 없이 초기 배합에서 곧바로 전기적 특성을 이러한 방향으로 개선하는 방법을 찾는 기초연구를 하는데 있다.(중략)

  • PDF

Experimental Study on the Triaxial Compressive Behaviour of Unsaturated Compacted Silt under Various Suction Levels (다양한 석션 레벨에서의 불포화실트의 삼축압축거동에 관한 실험적 연구)

  • Kim, Young-Seok;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2008
  • It has been recognized that the behaviour of unsaturated soil plays an important role in geomechanics. However, up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. From the test results, the behaviours of wetting-induced collapses are observed during the drainage/water absorption tests. Under exhausted-drained conditions during shearing, the shear strength increases with an increasing initial suction. On the other hand, the volume changes become small with an increase in the initial suction. And, the volumetric strain during shearing is independent of the confining pressure.

Moisture Absorption and Strengths of Composite Skins cured on the Close Heated Mold (폐쇄형 가열 금형에서 경화된 복합재 외피의 수분흡수 및 강도특성)

  • Kyung-Su Kim;Hyeon-Seok Choe;Byeong-Su Kwak;Jin-Hwe Kweon
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.126-131
    • /
    • 2024
  • The moisture absorption rate and structural strength changes of oven-cured composite skin based on closed molds were studied. Moisture absorption was performed on specimens with and without filler applied. The specimens were exposed to moisture for up to 231 days. Tensile and compression tests were conducted with and without filler application. As a result of the test, the moisture absorption rates of the tensile and compressive specimens without filler were 2.4 and 0.3% higher, respectively, than those with the filler applied. The tensile and compressive strengths of the specimen without filler applied were average 305 MPa and 139 MPa, respectively, and the tensile and compressive strengths of the specimen with filler applied were 313 MPa and 166 MPa, respectively, appeared high.

Effect of Internal Curing by Super-Absorbent Polymer (SAP) on Hydration, Autogenous Shrinkage, Durability and Mechanical Characteristics of Ultra-High Performance Concrete (UHPC) (고흡수성 수지(SAP)를 이용한 내부양생이 초고성능 콘크리트(UHPC)의 수화반응, 자기수축, 내구성 및 역학적 특성에 미치는 영향)

  • Kang, Sung-Hoon;Moon, Juhyuk;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.317-328
    • /
    • 2016
  • This research intends to understand the impact of super-absorbent polymer (SAP) as an internal curing agent in Ultra-High Performance Concrete (UHPC). Two different types of SAPs of acrylic acid (SAP_AA) and acrylic acid-co-acrylamide (SAP_AM) were examined with UHPC formulation. Isothermal calorimetry and x-ray diffraction experiments revealed the impact of polymers with the different chemical bonds on cement hydration. To test its feasibility as a shrinkage reducing admixture for UHPC, a series of experiments including flowability, compressive strength, rapid chloride permeability and autogenous shrinkage profile was performed. While both SAPs showed a reduction in autogenous shrinkage, it has been concluded that the SAP size and chemical form significantly affect the performance as an internal curing agent in UHPC by controlling cement hydration and porosity modification. Between the tested SAPs, SAP_AM which absorbs more water in UHPC than SAP_AA, shows better mechanical and durability performance.

Void Ratio Evaluation of Unsaturated Soils by Compressional and Shear Waves (압축파와 전단파를 이용한 불포화토의 간극비 산정)

  • Byun, Yong-Hoon;Cho, Se-Hyun;Yoon, Hyung-Koo;Choo, Yun-Wook;Kim, Dong-Su;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.41-51
    • /
    • 2012
  • Soils are commonly unsaturated in the near surface. The stiffness of soils is affected by the amount of air and water. The objective of this study is to evaluate the porosity of the unsaturated soils by using the elastic waves including compressional and shear waves. The elastic waves are measured at different degrees of saturation by controlling the matric suction. Thus, the unsaturated soils are characterized at different levels of the matric suction. Shear and compressional waves are measured by using the bender elements and the piezo disk elements, respectively. Both transducers are installed on the walls of the rectangular cell. The unsaturated soils are prepared by using uniform size sands and silts. Test results show that both compressional and shear wave velocities change according to the matric suction. The elastic modulus, the shear modulus, and the Poisson's ratio are estimated based on the measured elastic wave velocities. In addition, the void ratio of the unsaturated soils estimated using elastic wave velocities matches well with the volume based void ratio. This study demonstrates that the elastic waves can be effectively used for the characterization of unsaturated soils.

Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing (γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화)

  • Sung, Myung-Jin;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 2015
  • Carbonation of concrete causes reduction of pH and subsequently causes steel corrosion for reinforced concrete structure. However, for plain concrete structure or PC product, it can lead to a decrease in porosity, high density, improvement of concrete, shrinkage-compensation. Recently, based on this theory, research of $CO_2$ curing effect has been performed, but it was mainly focused on its effects on compressive strength using only ordinary portland cement. Researches on $CO_2$ curing effect for concrete containing $CO_2$ reactive materials such as ${\gamma}-C_2S$, MgO haven't been investigated. Therefore, this study has performed experiments under water-binder ratio 40%, and the replacement ratios of ${\gamma}-C_2S$ and MgO were 90%. Micro-chemical analysis, measurement of compressive strength according to admixtures and $CO_2$ curing were investigated. Results from this study revealed that higher strength was measured in case of $CO_2$ curing compared with none $CO_2$ curing for plain specimen indicating difference between 1.08 and 1.26 times, in case of ${\gamma}-C_2S$ 90, MgO 90 specimen, incorporating high volume replaced as much as 90%, it was proven that when applying $CO_2$ curing, higher strength which has difference between 14.56 and 45.7 times, and between 6.5 and 10.37 times was measured for each specimen compared to none $CO_2$ curing. Through micro-chemical analysis, massive amount of $CaCO_3$, $MgCO_3$ and decrease of porosity were appeared.

Absorption Properties of Coarse Aggregate according to Pressurization for Development of High Fluidity Concrete under High Pressure Pumping (고압송용 고유동콘크리트 개발을 위한 가압에 따른 굵은골재의 흡수 특성)

  • Choi, Yun-Wang;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.122-129
    • /
    • 2016
  • In this study, we developed a pressing device which can reproduce the pressure of concrete inside the conveying pipe as a part of the basic study to development of high fluidity concrete under high pressure pumping. Using this pressing device, we evaluated a absorption properties of aggregate that are crushed coarse aggregate, river gravel and lightweight coarse aggregate according to pressure of coarse aggregate and aggregate inside a high fluidity concrete, focused on the reduction of unit water quantity by pressure. In addition, it was evaluated the compressive strength of high fluidity concrete about before and after of pressive. Test a result, case of condition under the high pressure of 250 bar, absorption ratio of crushed coarse aggregate and river gravel were not increased above the surface absorption, absorption ratio of lightweight coarse aggregate was increased than the surface absorption.