• 제목/요약/키워드: 압전진동모드

Search Result 150, Processing Time 0.035 seconds

Experimental Evidence and Analysis of a Mode Conversion of Guided Wave Using Magnetostrictive Strip Transducer (자기변형 스트립 탐촉자에 의한 유도초음파 모드 변환에 대한 실험적 검증 및 해석)

  • Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.93-97
    • /
    • 2009
  • An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that the wave patterns are relatively clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaws. However, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Mode converted signals from a realistic piping mockup were acquired and analysed. We found mode conversions between a torsional guided wave T(0,1) mode and a flexural F(1,3) or longitudinal L(0,2) mode generated by a magnetostrictive strip transducer. Based on the experimental observations, an interpretation of the source of the mode conversion is discussed in a viewpoint of electromagnetic properties and structure of the strip transducer.

Papers : Snap - through Phenomena on Nonlinear Thermopiezoelastic Behavior of Piezolaminated Plates (논문 : 압전적층판의 비선형 열압전탄성 거동에서의 스냅 - 스루 현상)

  • O,Il-Gwon;Sin,Won-Ho;Lee,In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are investigated by applying an are-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von Karman strain-displacement relationships, nonlinear finite element formulations are derived for the thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopierzoelastic behavior and vibration characteristicx are stuied for symmetric and eccentric structural models with various piezoelestric actuation modes. Present results show the possibility to enhance the performance, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection piezolaminated paltes.

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.351-356
    • /
    • 2009
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological (MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) using HILS method and presented in time and frequency domain.

  • PDF

Multi-mode Noise Reduction of Smart Panels Using Piezoelectric Shunt Damping (압전션트 댐핑을 이용한 지능패널의 다중 모드 소음 저감)

  • 김준형;김재환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.300-307
    • /
    • 2003
  • This paper presents the multi-mode noise reduction of smart panels of which passive piezoelectric shunt damping is introduced. For the piezoelectric shunt damping, a passive shunt circuit composed of inductors and a load resistor is connected to the piezoelectric patch mounted on the panel structure. An electrical impedance model is introduced for the system based on the measured electrical impedance, and the criteria for maximum energy dissipation at the shunt circuit is used to find the optimal shunt parameters. For multi-mode shunt damping, the shunt circuit is modified by the introduction of a block circuit. Also the optimal location of the piezoelectric patch is studied by finite element analysis in order to cause the maximum admittance from the patch for each mode of the structure. An acoustic test is performed for the panels and a remarkable noise reduction is obtained in multiple modes of the panel structure.

Multi-mode noise reduction of using piezoelectric shunt damping smart panels (압전션트를 이용한 패널의 다중 모드 소음 저감에 관한 연구)

  • Kim, Joon-Hyoung;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.216-221
    • /
    • 2002
  • In this paper, the transmitted noise reduction of smart panels of which passive piezoelectric shunt damping is used, is experimentally studied. Shunt damping experiments are based on the measured electrical impedance model. A passive shunt circuit composed of inductors, and a load resistor is devised to dissipate the maximum energy into the joule heat energy. For multi-mode shunt damping, the shunt circuit is redesigned by adding a blocking circuit. Also the optimal location of the piezoelectric patch is studied by FEM in order to cause the maximum admittance from the patch for each mode of aluminum plate. In results, the transmitted sound pressure level of panels is efficiently reduced for multi-modes

  • PDF

Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator (전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가)

  • Paeng, Yong-Seok;Yook, Ji-Yong;Moon, Seok-Jun;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.617-623
    • /
    • 2007
  • This paper presents an active vibration control of a dynamic system using hybrid mount which consists of elastic rubber-piezostack actuator and elastic rubber-electromagnetic actuator, respectively. After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the dynamic system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the dynamic system are experimentally evaluated and presented in time and frequency domains.

Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator (전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가)

  • Paeng, Yong-Seok;Yook, Ji-Yong;Moon, Seok-Jun;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1131-1136
    • /
    • 2007
  • This paper presents an active vibration control of a 1-DOF system using hybrid mount which consists of elastic rubber and PZT(piezostack) actuator and elastic rubber and electromagnetic actuator, respectively After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the 1-DOF system are experimentally evaluated and presented in time and frequency domains.

  • PDF

Simulation for a metal based low frequency energy harvester (메탈 기반의 낮은 공진주파수 대역을 갖는 에너지 하베스터 시뮬레이션)

  • Lee, Jai-Hyuk;Cha, Doo-Yeol;Chang, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.210-210
    • /
    • 2010
  • 에너지 하베스트 기술은 자연의 빛에너지, 휴대용 기기 탑재/부착장치의 미세 진동에너지, 걷거나 뛰는 인간의 신체활동으로 인한 소산에너지 등을 흡수하여 전기에너지로 변환, 전자기기의 전력으로 사용하는 재생형 에너지원이다. 본 논문에서는 그 중 주변 환경에서 에너지를 끌어 쓸 수 있는 기술 중 압전 효과 방식을 이용한 진동 형태의 에너지 하베스트 기술을 활용하여 설계하고 FEM simulation을 통해 분석해보았다. 압전 물질로는 PZT를 사용하고 메탈기반의 캔틸레버로는 구리를 사용하여 크기를 길이, 넓이, 폭 각각 $6{\times}4{\times}0.025mm^3$으로 모델링하여 444Hz의 공진주파수에서 응력이 $2.68e^{+5}Pa$ 발생하는 결과를 얻었다. 그 결과 $d_{33}$ 모드의 전극형태에서 전압을 2.56V 얻을 수 있음을 추론할 수 있었다.

  • PDF

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological(MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three point mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) using HILS method and presented in time and frequency domain.

Modeling and Motion Control of Piezoelectric Actuator (비선형성을 고려한 압전소자의 모델링 및 운동제어)

  • 박은철;김영식;김인수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.630-637
    • /
    • 2003
  • This paper proposes a new modeling scheme to describe the hysteresis and the dynamic characteristics of piezoelectric actuators in the inchworm and develops a control algorithm for the precision motion control. From the analysis of piezoelectric actuator behaviors, the hysteresis can be described by the functions of a maximum input voltage. The dynamic characteristics are also identified by the frequency domain modeling technique based on the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. Therefore, the sliding mode control and the Kalman filter are developed for the precision motion control of the inch-warm. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF