• Title/Summary/Keyword: 압전박막

Search Result 168, Processing Time 0.023 seconds

Film Bulk Acoustic Wave Resonator for Bandpass Filter (밴드패스필터 구현을 위한 압전박막공진기 제작)

  • 김인태;박윤권;이시형;이윤희;이전국;김남수;주병권
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.597-600
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size and low cost, high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible suspended FBAR using surface micromachining. Membrane is composed $Si_3N_4SiO_2Si _3N_4$ multi layer and air gap is about 50${\mu}{\textrm}{m}$. Firstly, We perform one dimensional simulation applying transmission line theorem to verify resonance characteristic of the FBAR. Process of the FBAR is used MEMS technology. Fabricated FBAR resonate at 2.4GHz, $K^2_{eff}$ and Q are 4.1% and 1100.

Film Bulk Acoustic Wave Resonator using surface micromachining (표면 마이크로머시닝을 이용한 압전 박막 공진기 제작)

  • 김인태;박은권;이시형;이수현;이윤희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.156-159
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be fabricated as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible Suspended FBAR using surface micromachining. It is possible to make Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$membrane by using surface micromachining and its good effect is to remove the substrate silicon loss. FBAR was made on 2$\mu\textrm{m}$ multi-layered membrane using CVD process. According to our result, Fabricated film bulk acoustic wave resonator has two adventages. First, in the respect of device Process, our Process of the resonator using surface micromachining is very simple better than that of resonator using bull micromachining. Second, because of using the multiple layer, thermal expansion coefficient is compensated, so, the stress of thin film is reduced.

  • PDF

Finite Element Method Analysis of Film Bulk Acoustic Resonator (유한 요소법(FEM)을 이용한 압전 박막 공진기(FBAR)의 공진 모드 해석)

  • 송영민;정재호;이용현;이정희;최현철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.95-98
    • /
    • 2000
  • Film bulk acoustic resonator used in microwave region can be analyzed by one-dimension Mason's model and one-dimensional numerical method, but it had several constraints to analyze effects of area variation, electrode-area variation, electrode-shape variation and spurious characteristics. To overcome these constraints film bulk acoustic resonator must be analysed by three dimensional numerical method. So, in this paper three dimensional finite element method was used to analyze several moles of resonance and was compared with the one dimension Mason's model analysis and analytic solution.

  • PDF

Fabrication and Properties of ZnSnO3 Piezoelectric Films Deposited by a Pulsed Laser Deposition (Pulsed Laser Deposition 방법으로 증착된 ZnSnO3 압전 박막의 성장과 특성 평가)

  • Park, Byeong-Ju;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.18-21
    • /
    • 2014
  • Because the Pb-based piezoelectric materials showed problems such as an environmental pollution. lead-free $O_3$ materials were studied in the present study. The $O_3$ thin films were deposited at $640^{\circ}C$ on $Pt/Ti/SiO_2$ substrate by pulsed laser deposition (PLD) and were annealed for 5 min at $750^{\circ}C$ using rapid thermal annealing (RTA) in nitrogen atmosphere. Samples annealed at $750^{\circ}C$ showed a smooth morphology and an improvement of the dielectric and leakage properties, as compared with as-grown samples. However, electrical properties of the $O_3$ thin films obtained in the present study should be improved for piezoelectric applications.

수평방향 변위증폭을 위해 U-형상의 PZT 스트립과 지렛대 구조를 이용한 압전구동형 엑츄에이터의 설계, 제작 및 실험

  • 서영호;이택민;이준형;최두선;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.130-130
    • /
    • 2004
  • 본 논문에서는 RF 스위치의 엑추에이터로 사용하기 위한 수평구동형 박막형 PZT 엑추에이터의 설계, 제작 및 시험에 관한 것이다 기존의 RF 스위치들은 대부분 수직 방향의 접촉 방식을 채택하고 있고, 대부분 구조체가 두껍지 않은 막으로 이루어져 있어서, 엑추에이터로부터 힘을 충분히 전달받지 못한다. 이로 인해, 접촉력이 상대적으로 작게 되어, 접촉저항을 줄이기 위한 접촉압력을 내기 위해 접촉 면적을 줄일 수밖에 없게 된다. 따라서, 본 연구에서는 효과적인 힘의 전달이 가능한 수평방향의 접촉 방식과 상대적으로 큰 힘을 낼 수 있는 PZT 엑추에이터를 사용하고자 한다.(중략)

  • PDF

Piezoelectric Thin Films for Microtransducer (마이크로 트랜스듀서를 위한 압전 박막 소재 기술 동향)

  • Jung, Soo Young;Baek, Seung-Hyub
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.82-95
    • /
    • 2019
  • Piezoelectric materials can directly convert mechanical energy to electrical one, and vice versa. Research on piezoelectric materials and devices has a long history, and now many relevant products are available in a wide range of applications such as medical, military, industrial, home appliance, and mobile electronics. One of the major research trends now is not only to further improve the physical properties of the piezoelectric materials, but also to reduce the size of the piezoelectric devices. This review focuses on the development of piezoelectric thin films that can enhance the performance of microtransducers.

Study on the Bonding Process between Thin film and Piezoelectric Materials (박막과 압전 재료 결합에 관한 연구)

  • Chong, Woo-Suk;Kim, Gi-Beum;Hong, Chul-Un
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1014-1018
    • /
    • 2005
  • The purpose of this study is to obtain strong bond strength at the interface between piezoelectric substrates and semiconductor thin films to be applied for the manufacture of high-performance acoustic wave semiconductor coupled device. For this purpose, we have compared and examined the effects of different surface treatment methods on hydrophile properties at the surface of the piezoelectric substrates. Moreover, we have observed the effect of microwave and laser on the elimination of water molecules at the interface. As for the piezoelectric substrates, dry method for surface treatment was found to be superior in the control of hydrophilicity of the surface compared to wet method. On the other hand, both microwave and laser were found to be effective in the elimination of water molecules in the interface.

Monolithic film Bulk Acoustic Wave Resonator using SOI Wafer (SOI 웨이퍼를 이용한 압전박막공진기 제작)

  • 김인태;김남수;박윤권;이시형;이전국;주병권;이윤희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1039-1044
    • /
    • 2002
  • Film Bulk Acoustic Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents an MMIC compatible suspended FBAR using SOI micromachining. It is possible to make a single crystal silicon membrane using a SOI wafer In fabricating active devices, SOI wafer offers advantage which removes the substrate loss. FBAR was made on the 12㎛ silicon membrane. Electrode and Piezoelectric materials were deposited by RF magnetron sputter. The maximum resonance frequency of FBAR was shown at 2.5GHz range. The reflection loss, K$^2$$\_$eff/, Q$\_$serise/ and Q$\_$parallel/ in that frequency were 1.5dB, 2.29%, 220 and 160, respectively.

Design and fabrication of film Bulk Acoustic Resonator for flexible Microsystems (Flexible 마이크로시스템을 위한 압전 박막 공진기의 설계 및 제작)

  • 강유리;김용국;김수원;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1224-1231
    • /
    • 2003
  • This paper reports on the air-gap type thin film bulk acoustic wave resonator(FBAR) using ultra thin wafer with thickness of 50$\mu\textrm{m}$. It was fabricated to realize a small size devices and integrated objects using MEMS technology for flexible microsystems. To reduce a error of experiment, MATLAB simulation was executed using material characteristic coefficient. Fabricated thin FBAR consisted of piezoelectric film sandwiched between metal electrodes. Used piezoelectric film was the aluminum nitride(AlN) and electrode was the molybdenum(Mo). Thin wafer was fabricated by wet etching and dry etching, and then handling wafer was used to prevent damage of FBAR. The series resonance frequency and the parallel frequency measured were 2.447㎓ and 2.487㎓, respectively. Active area is 100${\times}$100$\mu\textrm{m}$$^2$.Q-factor was 996.68 and K$^2$$\_$eff/ was 3.91%.

A Study on the ZnO Piezoelectric Thin Films for SAW Filter by RF Magnetron Sputtering (RF 마그네트론 스퍼터링에 의한 SAW 필터용 ZnO 압전 박막에 관한 연구)

  • 최형욱;김경환;김상종;강종윤;안병국;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.798-807
    • /
    • 2002
  • ZnO thin films on Si wafer were deposited by RF magnetron reactive sputter with various RF power, chamber pressure, argon/oxygen gas ratios ana substrate temperatures. Crystallinities, surface morphologies, and electrical properties of the films were investigated by XRD, AFM, RBS, and electrometer(keithley 617). ZnO films showed a strong c-axis preferred orientation. Surface roughness and resistivity were changed by the argon/oxygen gas ratio. The minimum surface roughness of 12${\AA}$ and maximum resistivity of $10^8\Omega cm$ were achieved at Ar/O$O_2$=0/100.