• Title/Summary/Keyword: 압입실험

Search Result 72, Processing Time 0.024 seconds

A Study on Development of Monitoring System of Lower Arm Ball Joint Inserting Force (Lower Arm 볼조인트 압입력 모니터링 시스템 개발에 관한 연구)

  • 강택호;김교형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.648-652
    • /
    • 1994
  • Lower Arm은 전차축식 현가장치에 사용되는 자동차부품으로 바퀴에서 발생되는 제동력이나 코너링력 등을 지탱하는 장치이다. V형의 상하 2개의 서스펜션암의 축에 의해 츠레임에 장착되고 좌우에 있는 Lower Arm끝부분은 볼조인트 및 부싱에 의해 스티어링 너클에 부착된다. 압입부품들은 자동차의 주행중 발생하는 외력에 의하여 이탈될 수 있는 위험성에 항상 노출되어 있어 자동차에 사용하는 압입부품들의 이탈력은 매우 중요하지만 한번 이탈시킨 Lower Arm은 이탈력이 현저히 저하되기 때문에 이탈력 측정에 의한 품질관리는 전량검사가 불가능하게 된다. 본 연구는 Lower Arm에 압입되는 볼조인트의 압입력을 압입거리에 따라 측정하여 Lower Arm에 뚫어진 볼조인트 압입구멍의 크기와 압입력의 상관관계를 실험적으로 구할수 있는 크기와 압입력의 상관관계를 실험적으로 구할 수 있는 모니터링 시스템을 개발하고자 한다.

  • PDF

Measurement of Mechanical Properties of Thin Films Using a Combination of the Bulge Test and Nanoindentation (벌지 실험과 나노 압입 실험을 통한 박막의 기계적 물성 측정)

  • Jung, Bong-Bu;Lee, Hun-Kee;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.117-123
    • /
    • 2012
  • This paper discusses two different techniques used to measure the mechanical properties of thin films: the bulge test and the nanoindentation test. In the bulge test, a uniform pressure is applied to one side of the film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as Young's modulus, and the residual stress. A nanoindentation test is performed by pushing an indenter tip into the specimen and then withdrawing it, and then recording the indentation force as a function of the indenter position. A modified King's model is used to estimate the mechanical properties of the thin film in order to avoid the effects of the substrate layers. A combination of both the bulge test and the nanoindentation test can determine both Young's modulus and Poisson's ratio simultaneously.

크립현상을 고려한 PMMA의 상온 나노압입실험에 대한 연구

  • 윤성원;김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.133-133
    • /
    • 2004
  • 박막이나 초미세 구조체의 경도 및 탄성계수 측정을 위한 나노 압입실험에서는 Oliver & Pharr가 제안한 하중-변위 측정 나노압입법이 널리 쓰이고 있다 위 실험법에서, 나노경도(nano-hardness; H$_{n}$)는 최대하중을 계산된 접촉면적 (A$_{c}$)으로 나누어 평가하고, 압입자 및 박막의 탄성성질을 포함하는 환산 탄성계수 (reduced modulus ; E$_{r}$)는 하중제거곡선의 초기 기울기인 접촉탄성강성 (S)를 이용하여 계산한다. 그러나, 하중-변위 측정 나노압입법에서는 탄성 및 소성변형만이 고려되고 시간 의존적 변형거동 (time dependent deformation; TDD)은 고려되지 않는다.(중략)

  • PDF

Prediction of the Penetration Energy for Composite Laminates Subjected to High-velocity Impact Using the Static Perforation Test (정적압입 관통실험을 이용한 복합재 적층판의 고속충격 관통에너지 예측)

  • You, Won-Young;Lee, Seokje;Kim, In-Gul;Kim, Jong-Heon
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.147-153
    • /
    • 2012
  • In this paper, static perforation tests are conducted to predict the penetration energy for the composite laminates subjected to high velocity impact. Three methods are used to analyze the perforation energy accurately. The first method is to select the perforation point using the AE sensor signal energy, the second method is to retest the tested specimen and use the difference between initial and retested perforation energy, and the third method is to select the perforation point based on the maximum loading point in the retested load-displacement curve of the tested specimen. The predicted perforation energy results are presented and verified by comparing with those by the high velocity tests.

Prediction of Ballistic Limit for Composite Laminates Subjected to High-velocity Impact Using Static Perforation Test (정적압입 관통 실험을 이용한 복합재 적층판의 고속충격 탄도한계속도 예측)

  • You, Won-Young;Kim, In-Gul;Lee, Seokje;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The ballistic limit of Carbon/Epoxy composite laminates with the finite effective area are predicted by using the quasi-static perforation test and semi-empirical formula. The perforation energy were calculated from force-displacement curve in quasi-static perforation test. Also, the actual ballistic limit and penetration energy were obtained through the high-velocity impact test. The quasi-static perforation test and high-velocity impact test were conducted for the specimens with 3 different effective areas. In the high-velocity impact test, the air gun impact tester were used, and the ballistic and residual velocity was measured. The required inputs for the semi-empirical formula were determined by the quasi-static perforation tests and high-velocity impact tests. The comparison between semi-empirical formula and high-velocity impact test results were conducted and examined. The ballistic limits predicted by semi-empirical formula were agreed well with high-velocity impact test results.

Mathematical Modeling on the Corrosion Behavior of the Steel Casing and Pipe in Cathodic Protection System (음극방식 시스템에서의 압입관과 배관의 부식거동에 관한 수학적 모델링)

  • Kim Y.S.;Li S.Y.;Park K.W.;Jeon K.S.;Kho Y.T.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.40-46
    • /
    • 1998
  • Mathematical modeling on the corrosion of the steel casing and main pipe due to the protection current resulting from a cathodic protection system was carried out using boundary element method. The model is consisted of Laplace's equation with non-linear boundary conditions(Tafel equations) and the iterative technique to determine the miexed potential of the steel casing. The model is applied to the normal steel casing section as well as abnormal one with defects such as metal touch and insulation defects. From the modeling procedure, we can calculate the potential distributions and current density distributions of the system. The theoretical results of the qualitatiive corrosion aspect along the steel casing and main pipe agree well with the experimental results within the experimental conditions studied.

  • PDF

Jacking Penetration Resistance of Bucket Foundations in Silty Sand Using Centrifuge Modelling (실트질모래 지반에서 버켓기초의 압입저항력에 대한 원심모형실험 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Lee, Kyu-Yeol;Jee, Sung-Hyun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.25-35
    • /
    • 2015
  • Penetration resistance of bucket foundations with skirt wall in the silty sand of the western coast of Korea was analyzed by centrifuge modelling. The penetration resistance is induced when the bucket foundations are jacked into the soil without suction, and is directly related to the self-weight penetration depth. The procedure by Houlsby and Byrne (2005), which takes into account the effect of stress increase by frictional resistance of skirt wall, was utilized to generate the penetration resistance similar to the experimental results. This paper describes the methods by which major parameters such as lateral earth pressure coefficient and friction angle between the skirt wall and the soil are evaluated. The effect of changes in these parameters on the predictions is analyzed. Also, observed soil behaviour during jacking penetration is investigated.

Deformation Behaviors of Materials under Nanoindentation and Their Simulation by Three Dimensional FEM Analysis (재료의 나노압입변형과 그에 대한 3차원 FEM분석)

  • 김지수;양현윤;김봉섭;윤존도;조상봉
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.38-38
    • /
    • 2003
  • 최근 나노기술의 발달과 더불어 나노재료에 대한 특성평가 요구가 높아지고 있고, 따라서 나노스케일로 재료의 기계적 거동을 분석할 수 있는 나노인덴테이션 기법이 심도있게 연구되고 있다. 본 연구에서는 나노인덴테이션을 이용하여 여러 가지 재료의 탄성 소성 변형 거동을 관찰 조사하고 이를 다시 유한요소법(FEM)으로 모사하여 해석하였다. 나노인덴테이션으로 재료 표면에 압입하여 탄소성 변형을 일으켰으며 이때의 가하중과 변형깊이를 측정하여 하중-변형 곡선을 얻었다. 매우 작은 접촉응력 조건하에서는 탄성변형의 비율이 매우 높았는데 하중-변형 곡선으로부터 재료의 나노 경도와 탄성 계수값을 얻을 수 있었다. 실험적으로 얻은 하중-변형 곡선을 3 차원의 유한요소법(FEM)을 이용하여 모사하였는데 상호간에 매우 근접한 결과를 얻을 수 있었다. 이 때 압자의 모양, 압입 깊이, 재료의 종류, 둥을 변수로 하여 여러 가지 조건하에서 압입실험을 하였으며 그 결과를 유한요소법으로 모사하였다.

  • PDF

Study on the damage effect to the Gas pipeline coating by the crashed stone backfill material (쇄석을 가스배관 채움재로 사용시 배관피복에 미치는 영향 연구)

  • Cho Sung Ho;Jeon Kyung Soo;Li Seon Yeob;Cho Yong Bum;Kho Young Tei
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.23-27
    • /
    • 1998
  • To protect the underground pipeline from the mechanical damage and to enhance the cathodic protection effect, the river sand has been backfilled traditionally around the buried pipeline. However, river sand became depleted and expensive. One has to seek for the economic alternative materials. Crashed stone is a good candidate for the backfill material. In this study, how much the particle size and shape of the crashed stone can effect on the gas pipeline coating was examined. A series of laboratory and field test was performed. In the Lab, the increasing loads were applied to the coated pipeline surrounded by the crashed stone, where no significant damage was observed.

  • PDF

Stress Conversion Factor on Penetration Depth of Knoop Indentation for Assessment of Nano Residual Stress (나노 잔류응력 측정을 위한 비등방 압입자의 깊이별 응력환산계수 분석)

  • Kim, Won Jun;Kim, Yeong Jin;Kim, Young-Cheon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.95-100
    • /
    • 2019
  • Nanoindentation has been widely used for evaluating mechanical properties of nano-devices, from MEMS to packaging modules. Residual stress is also estimated from indentation tests, especially the Knoop indenter which is used for the determination of residual stress directionality. According to previous researches, the ratio of the two stress conversion factors of Knoop indentation is a constant at approximately 0.34. However, the ratio is supported by insufficient quantitative analyses, and only a few experimental results with indentation depth variation. Hence, a barrier for in-field application exists. In this research, the ratio of two conversion factors with variation in indentation depth using finite elements method has been attempted at. The magnitudes of each conversion factors were computed at uniaxial stress state from the modelled theoretical Knoop indenter and specimen. A model to estimate two stress conversion factor of the long and short axis of Knoop indenter at various indentation depths is proposed and analyzed.