• Title/Summary/Keyword: 압력저감

Search Result 347, Processing Time 0.026 seconds

Energy Efficiencies : Pipe-dream or reality (에너지효율 실현 가능한가)

  • Korea Energy Forum
    • 에너지협의회보
    • /
    • s.75
    • /
    • pp.40-47
    • /
    • 2006
  • WEC는 전례 없는 고유가 상황 지속과 온실가스배출 저감에 대한 여론압력이 전면으로 부각되는 시기에‘에너지효율개선’을 주제로 지난 3월 2006년도 보고서를 발표하였습니다. 에너지효율 문제에 대한 시각도 선진국은 자국의 경쟁력을 유지하거나 GHG 배출을 줄이기 위한 수단 정도로 생각하는 반면, 개도국은 에너지공급투자에 필요한 제약요인 감소 수단으로서 최우선순위를 두고 있습니다. WEC는 에너지효율목표에대한이러한선후진국간의차이에도불구하고에너지효율은정부, 업계, 개별 소비자의 협력

  • PDF

Trends in clutch actuating hydraulic control system of automatic transmission for vehicles (차량용 자동변속기 유압제어계의 개발동향)

  • 이일영;양경욱;윤소남
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.28-35
    • /
    • 1995
  • 본 해설에서는 클러치 제어용 유압계 특성에 대하여 간략히 서술하고 각 장치즐의 장단점을 비교 검토함과 동시에, 본 저자들이 개발한 클러치 조작용 유압계에 쓰이는 압력조절장치에 대하여 설명한다. 1. 변속장치내 클러치 조작용 유압계 특성. 1.1 클러치 조작용 유압계 제어의 필요성. 1.2 변속시 충격 토크의 저감법. 1.3 클러치 조작용 유압계의 제어방식.

  • PDF

Suggestions to solve the difficulties of CDRS assessment (CDRS 개발기술평가에 있어서 어려운점과 극복방안)

  • 박정규;최미희;허은녕
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.689-696
    • /
    • 2003
  • 지구 온난화로 인한 지구시스템 변화의 불확실성을 최소화하기 위한 방편으로 세계는 기후변화협약 등 다양한 자구책 마련에 급급하다. 기후변화협약에서는 대기 중 온실파스 농도 안정화를 목적으로 선진국의 역사적 책임에 따른 선도적 역할, 개도국의 특별한 사정존중, 지속 가능한 성장보장 등을 원칙으로 규정하고 산업선진국에는 이산화탄소 저감의무가 주어졌으며, 개도국 중 특히 한국이나 멕시코와 같이 경제발전이 어느 정도 이루어졌고 이미 OECD에 가입한 나라들에 대해서는 이러한 압력이 보다 가시화 될 것으로 보인다.(중략)

  • PDF

자동차용 엔진의 연구동향

  • 이성렬
    • Journal of the KSME
    • /
    • v.28 no.5
    • /
    • pp.469-475
    • /
    • 1988
  • 연료소비율의 향상은 점차 감소되어 가는 경향에 있다. 그 원인은 3원촉매변환기 채용에 의한 이론공기연료비의 사용, 기관의 연소개선이 발전하여 고압축비화에 의한 연료소비율 향상이 더 이상 어렵게 되었다는 점을 들 수 있다. 한편, 고압축비화의 역효과로는 연소실내 최고압력이 증가하여 각부의 강도나 기관 소음의 문제가 대두된다. 이들 역효과를 타파하여 충분한 연료 소비 향상을 얻을 수 있는 수단이 단기적인 과제가 될 것이다. 전자제어, 희박연소, 마찰저감 등 통상의 엔진의 개량에 대한 노력이 계속될 것이다.

  • PDF

The Development of Dynamic Model for Long-Term Simulation in Water Distribution Systems (상수관망시스템에서의 장기간 모의를 위한 동역학적 모형의 개발)

  • Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.325-334
    • /
    • 2007
  • In this study, a long-term unsteady simulation model has been developed using rigid water column theory which is more accurate than Extended-period model and more efficient comparing with water-hammer simulation model. The developed model is applied to 24-hours unsteady simulation considering daily water-demand and water-hammer analysis caused by closing a valve. For the case of 24-hours daily simulation, the pressure of each node decreases as the water demand increase, and when the water demand decrease, the pressure increases. During the simulation, the amplitudes of flow and pressure variation are different in each node and the pattern of flow variation as well as water demand is quite different than that of KYPIPE2. Such discrepancy necessitates the development of unsteady flow analysis model in water distribution network system. When the model is applied to water-hammer analysis, the pressure and flow variation occurred simultaneously through the entire network system by neglecting the compressibility of water. Although water-hammer model shows the lag of travel time due to fluid elasticity, in the aspect of pressure and flow fluctuation, the trend of overall variation and quantity of the result are similar to that of water-hammer model. This model is expected for the analysis of gradual long-term unsteady flow variations providing computational accuracy and efficiency as well as identifying pollutant dispersion, pressure control, leakage reduction corresponding to flow-demand pattern, and management of long-term pipeline net work systems related with flowrate and pressure variation in pipeline network systems

A study on in-flight acoustic load reduction in launch vehicle fairing by FE-SEA hybrid method (FE-SEA 하이브리드 기법을 이용한 비행 중 발사체 페어링 내부 음향하중 저감에 관한 연구)

  • Choi, Injeong;Park, Seoryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.351-363
    • /
    • 2020
  • Launch vehicles are subject to airborne acoustic loads during atmospheric flight and these effects become pronounced especially in transonic region. As the vibration due to the acoustic loads can cause malfunction of payloads, it is essential to predict and reduce the acoustic loads. In this study, a complete process has been developed for predicting airborne vibro-acoustic environment inside the payload pairing and subsequent noise reduction procedure employing acoustic blankets and Helmholtz resonators. Acoustic loads were predicted by Reynolds-Averaged Navier-Stokes (RANS) analysis and a semi-empirical model for pressure fluctuation inside turbulent boundary layer. Coupled vibro-acoustic analysis was performed using VA One SEA's Finite Element Statistical Energy Analysis (FE-SEA) hybrid module and ANSYS APDL. The process has been applied to a hammerhead launch vehicle to evaluate the effect of acoustic load reduction and accordingly to verify the effectiveness of the process. The presently developed process enables to obtain quick analysis result with reasonable accuracy and thus is expected to be useful in the initial design phase of a launch vehicle.

A Study on the Flow Entrainment Characteristics of a Coaxial Nozzle Used in a MILD Combustor with the Change of Nozzle Position and Flow Condition (MILD 연소로에서 노즐의 위치와 유동 조건에 따른 유입량 특성에 관한 연구)

  • Shim, Sung-Hoon;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • A MILD (Moderate and Intense Low oxygen Dilution) combustor decreases NOx formation effectively during the combustion process and NOx formation is affected significantly by the exhaust gas entrainment rate toward fuel and air. The present study focused on the new MILD combustor, which has coaxial cylindrical tube. The outside tube of the new MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. The connection pipe is set between the outer side and the inner side tubes and coaxial air nozzle is inserted at the center of the connection pipe. A numerical analysis is accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of air nozzle exit velocity, nozzle diameter, nozzle exit position and exhaust gas side pressure. The entrainment rate is proportional to the square root of air nozzle exit velocity and negatively proportional to the pressure difference between the exhaust gas side and furnace side pressures. The effect of air nozzle exit position is not considerable on the exhaust gas entrainment.

Effect of fuel injection timing and pressure on the combustion and spray behavior characteristics of diesel fuel for naval vessel (연료분사시기와 압력이 함정용 디젤연료의 분무 및 연소특성에 미치는 영향)

  • Lee, Hyung-min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.911-917
    • /
    • 2015
  • The objective of this work focuses on the analysis of injection rate and macroscopic spray behavior characteristics with injection pressures as well as combustion and exhaust emission characteristics with injection timing and injection pressure by using a common rail single-cylinder diesel engine. The injection rate was measured by applying the Bosch method, and macroscopic spray behavior characteristics were analyzed with a constant-volume vessel and a high-speed camera. In addition, combustion and emission characteristics were analyzed in a common-rail single-cylinder diesel engine with precise control of fuel injection timing and pressure. For injection pressures of 30MPa and 50MPa, the injection rate was higher at 50 MPa, and the spray development (penetration) was also higher in the same elapsed time. The peak in-cylinder pressure and rate of heat release showed a tendency to decline as injection timing was delayed, and the peak in-cylinder pressure and rate of heat release were slightly higher for higher injection pressures. Higher injection pressures also reduced the mean effective pressure, while the indicated mean effective pressure and torque increased as injection timing was delayed to TDC. Nitrogen oxides had a peak level at injection timings of $BTDC20^{\circ}$(30MPa) and $BTDC15^{\circ}$(50MPa); carbon monoxide emissions were reduced by delaying injection timing from $BTDC30^{\circ}$.

Buckling Analysis and Test of Composite Sandwich Cylinder for Underwater Application (수종운동체 적용을 위한 샌드위치 복합재 원통의 좌굴 해석 및 시험)

  • Kim, Ji-Seon;Lee, Gyeong-Chan;Kweon, Jin-Hwe;Cho, Jin-Ho;Cho, Jong-Rae;Cho, Sang-Rae;Cho, Yoon-Sik
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.17-22
    • /
    • 2011
  • In this paper, as a basic research to apply the composite sandwich to underwater vehicle, the manufacturing, analysis and test methods, and weight saving effect of a composite sandwich cylinder under external pressure were studied. A two-step manufacturing method to prevent the wrinkling of the sandwich cylinder face was proposed and the three cylinders were made and tested. Finite element results based on the shell and solid model using MSC.Nastran were compared with test results. The comparison showed that the linear finite element analysis using the shell and solid elements can predict the buckling pressure of the sandwich cylinder with approximately 3% difference. The parametric study of the filament wound cylinders revealed that the composite sandwich can reduce the weight of the cylinder more than 30% compared with the filament wound cylinder supporting the same pressure.

Development of Pilot Injection Plant for CO2 Underground Storage (이산화탄소 지중저장용 파일럿 주입플랜트 개발)

  • Yoon, Seok-Ho;Kim, Young;Lee, Jun-Ho;Lee, Kong-Hoon
    • Plant Journal
    • /
    • v.9 no.2
    • /
    • pp.42-45
    • /
    • 2013
  • The worldwide issue of greenhouse gas reduction has recently drawn great attention to carbon capture and storage(CCS). In this study, we developed a 10,000 ton/year pilot injection plant for geological storage of carbon dioxide. Major components of the pilot plant include a pressure pump, a booster pump, and an inline heater to bring liquid carbon dioxide into its supercritical state. The test results show that the pilot plant readily achieves the injection pressure and temperature, showing satisfactory control performance. The overall power consumption is 2,000 ~ 2,500 W, more than 75% of which consumed by the pressure pump. This study will facilitate varied research on greenhouse gas reduction as the only domestically developed system for geological injection.

  • PDF