• Title/Summary/Keyword: 압력기반 알고리즘

Search Result 40, Processing Time 0.028 seconds

A Method to Recover 2D barcodes Contaminated with Dust (2D 바코드의 분진 오염 극복 방법)

  • Ha, Eunjae;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.276-281
    • /
    • 2019
  • Food printers must use food ink cartridges approved by the Ministry of Food and Drug Safety (MFDS). A 2D bar code is used to read whether the ink cartridge is authentic. However, since the dye is diverged by heat pressure and printed, the barcode is contaminated. In this paper, we propose a pre-processing algorithm to solve the problem of barcode contamination by food coloring dust in a latte art printer. The algorithm is based on various morphological operations. We apply this algorithm before reading contaminated barcode images with a general QR code reader. It has been confirmed that, as compared with the existing QR code reader, the contamination rate that can be perceived is increased from 25% to 40% and even at a contamination rate of 45%, the recognition rate reaches 50%.

Analysis of Elastic Wave Based Leakage Detection Technology Using Accelerometers (가속도계를 이용한 탄성파 기반 누수탐지 기술 분석)

  • Choi, Kwangmook;Lee, Hohyun;Shin, Gangwook;Hong, Sungtaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1231-1240
    • /
    • 2020
  • Water pipes are laid on the ground, making it impossible to visually detect leaks due to aging of pipes, and technology to detect leaks in pipes is mainly used to detect leaks in pipes by detecting leaks. In this paper, two accelerometers were attached to both ends of the constant water piping to calculate the time difference between the acquired data to detect leakage points. The leak test of piping was performed by installing valves at 4.3m, 8.6m, and 12.9m points on piping 17.2m, and changing the development rate of valves to 30% and 70%. Leakage can be detected for pressure drop in piping, which is 30% and 70% open valve. It is very important to detect leakage in the early stage, and it is judged that detection of the initial leak point from the algorithm applied in this paper will be possible.

Particle Based Discrete Element Modeling of Hydraulic Stimulation of Geothermal Reservoirs, Induced Seismicity and Fault Zone Deformation (수리자극에 의한 지열저류층에서의 유도지진과 단층대의 변형에 관한 입자기반 개별요소법 모델링 연구)

  • Yoon, Jeoung Seok;Hakimhashemi, Amir;Zang, Arno;Zimmermann, Gunter
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.493-505
    • /
    • 2013
  • This numerical study investigates seismicity and fault slip induced by fluid injection in deep geothermal reservoir with pre-existing fractures and fault. Particle Flow Code 2D is used with additionally implemented hydro-mechanical coupled fluid flow algorithm and acoustic emission moment tensor inversion algorithm. The output of the model includes spatio-temporal evolution of induced seismicity (hypocenter locations and magnitudes) and fault deformation (failure and slip) in relation to fluid pressure distribution. The model is applied to a case of fluid injection with constant rates changing in three steps using different fluid characters, i.e. the viscosity, and different injection locations. In fractured reservoir, spatio-temporal distribution of the induced seismicity differs significantly depending on the viscosity of the fracturing fluid. In a fractured reservoir, injection of low viscosity fluid results in larger volume of induced seismicity cloud as the fluid can migrate easily to the reservoir and cause large number and magnitude of induced seismicity in the post-shut-in period. In a faulted reservoir, fault deformation (co-seismic failure and aseismic slip) can occur by a small perturbation of fracturing fluid (<0.1 MPa) can be induced when the injection location is set close to the fault. The presented numerical model technique can practically be used in geothermal industry to predict the induced seismicity pattern and magnitude distribution resulting from hydraulic stimulation of geothermal reservoirs prior to actual injection operation.

Analysis of Seawater Intake System using the RNG k-𝜖 Algorithm (RNG k-𝜖 알고리즘을 이용한 해수취수시스템 분석)

  • Kim, Ji-Ho;Kim, Tae-Won;Lee, Seung-Oh;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6447-6454
    • /
    • 2013
  • Seawater intake systems have significant problems due to seawater pollution, suspended solids, unstable intake and maintenance etc. An underground type seawater intake system was newly developed to overcome the existing weaknesses and was facilitated in Gyukpo port. In this study, to check the performance of the new system, the samples for water quality and the 3-D numerical modeling test were conducted. The five times test included the COD, total nitrogen, total phosphorus, pH, and suspended solid for the intake system. The analyses show that the COD, total nitrogen, total phosphorus, PH showedminor changes before and after. On the other hand, the change in suspended solids was significant and water was purified below 5 mg/l, first level fisheries water, after. The numerical model adopted the RNG $k-{\epsilon}$ algorithm and the CFX model based on the finite volume method. The porosity algorithm was used to reproduce filtered-sand, outer diameter, and thickness. The numerical results showed that the double pipe is advantageous in that it provides a uniform pressure between the inner and outer pipe for the flow to be stable. In addition, the use of multiple intake pipes did not interfere with the discharge reduction of 0.98 at the both intake pipes compared with the central intake pipe.

A Security Nonce Generation Algorithm Scheme Research for Improving Data Reliability and Anomaly Pattern Detection of Smart City Platform Data Management (스마트시티 플랫폼 데이터 운영의 이상패턴 탐지 및 데이터 신뢰성 향상을 위한 보안 난수 생성 알고리즘 방안 연구)

  • Lee, Jaekwan;Shin, Jinho;Joo, Yongjae;Noh, Jaekoo;Kim, Jae Do;Kim, Yongjoon;Jung, Namjoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.75-80
    • /
    • 2018
  • The smart city is developing an energy system efficiently through a common management of the city resource for the growth and a low carbon social. However, the smart city doesn't counter a verification effectively about a anomaly pattern detection when existing security technology (authentication, integrity, confidentiality) is used by fixed security key and key deodorization according to generated big data. This paper is proposed the "security nonce generation based on security nonce generation" for anomaly pattern detection of the adversary and a safety of the key is high through the key generation of the KDC (Key Distribution Center; KDC) for improvement. The proposed scheme distributes the generated security nonce and authentication keys to each facilities system by the KDC. This proposed scheme can be enhanced to the security by doing the external pattern detection and changed new security key through distributed security nonce with keys. Therefore, this paper can do improving the security and a responsibility of the smart city platform management data through the anomaly pattern detection and the safety of the keys.

Configuration of clustering and routing algorithms for energy efficiency by wireless sensor network in ship (선박 내 무선 센서 네트워크에서 에너지 효율을 위한 클러스터링 및 라우팅 알고리즘의 구성)

  • Kim, Mi-jin;Yu, Yun-Sik;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.435-438
    • /
    • 2012
  • Today, In all fields, As combination of ubiquitous computing-based technologies between electronic space and physical space, has been active trend research about wireless integration sensor network between sensors and wireless technology. Also, but in ship is underway research about Ship Area Network(SAN) of intelligent ship to integrate wireless technology, ship is required SAN-bridge technology of a variety of wired, wireless network integration and heterogeneous sensor and interoperability of the controller and SAN configuration management technology of remote control. Ship keep safe of all the surrounding environment including crew besides structural safety and freight management monitoring. In this paper, for monitoring design such as on climate change detection and temperature, pressure about various structures, there identify technology trends for routing and data aggregation to use energy efficiency in wireless sensor network. And to analyze self-organizing clustering method, study For wireless sensor network configuration in ship.

  • PDF

Study on Vacuum Pump Monitoring Using Adaptive Parameter Model (적응형 인자 모델을 이용한 개선된 진공펌프 상태진단에 관한 연구)

  • Lee, Kyu-Ho;Lee, Soo-Gab;Lim, Jong-Yeon;Cheung, Wan-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.165-175
    • /
    • 2011
  • This paper introduces statistical features observed from measured batch data from the multiple operation state variables of dry vacuum pumps running in the semiconductor processes. The amplitude distribution characteristics of such state variables as inlet pressures, supply currents of the booster and dry pumps, and exhaust pressures are shown to be divided into two or three distinctive regions. This observation gives an idea of using an adaptive parametric model (APM) chosen to describe their statistical features. This modelling, in comparison to the traditional dynamic time wrapping algorithm, is shown to provide superior performance in computation time and memory resources required in the preprocessing stage of sampled batch data for the diagnosis of running dry vacuum pumps. APM model-based batch data are demonstrated to be very appropriate for monitoring and diagnosing the running conditions of dry vacuum pumps.

Context-Aware System for Status Monitoring of Industrial Automation Equipment (산업 자동화 장비의 상태감시를 위한 상황인지 시스템)

  • Kim, Kyung-Nam;Jeon, Min-Ho;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.552-555
    • /
    • 2010
  • In this paper, we propose a context-aware system using wireless multi sensor module to monitor the state for industrial factory environment. Wireless multi sensor module combines sensing values which are collected from each acceleration, pressure, temperature and gas sensors. Moreover, it delivers this data to server after being encoded by RS code. Thereafter, RS decoder decodes the values that are received from wireless multi sensor module and fixes errors which occur in wireless communication. Based on decoded data, context-aware algorithm sets critical range and compares it to the sensing values, if the sensing values are out of the range, an event occurs by the algorithm. At the same time, if there is another sensing value which is out of the range for standby time T seconds, the algorithm orders 3 steps-alarm to occur depending on each situation. Through this system, it becomes eventually possible to monitor machines' condition effectively. From the simulation, we confirm that this system is efficient to status monitoring of industrial automation equipment.

  • PDF

Web based Fault Tolerance 3D Visualization of IoT Sensor Information (웹 기반 IoT 센서 수집 정보의 결함 허용 3D 시각화)

  • Min, Kyoung-Ju;Jin, Byeong-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-152
    • /
    • 2022
  • Information collected from temperature, humidity, inclination, and pressure sensors using Raspberry Pi or Arduino is used in automatic constant temperature and constant humidity systems. In addition, by using it in the agricultural and livestock industry to remotely control the system with only a smartphone, workers in the agricultural and livestock industry can use it conveniently. In general, temperature and humidity are expressed in a line graph, etc., and the change is monitored in real time. The technology to visually express the temperature has recently been used intuitively by using an infrared device to test the fever of Corona 19. In this paper, the information collected from the Raspberry Pi and the DHT11 sensor is used to predict the temperature change in space through intuitive visualization and to make a immediate response. To this end, an algorithm was created to effectively visualize temperature and humidity, and data representation is possible even if some sensors are defective.

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • The Korean Fashion and Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.