• Title/Summary/Keyword: 압력강하량

Search Result 92, Processing Time 0.022 seconds

Development on the Sub-Cooled Hybrid Condenser in Automotive Air-Conditioning System (자동차 냉방시스템에서 건조기 일체형 응축기 개발)

  • 김경훈;장주섭;박종일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.70-76
    • /
    • 2003
  • An experimental study was performed to understand the heat transfer and fluid dynamic characteristics of Sub-Cooled Hybrid Condenser (SCHC), which conventional condenser and receiver dryer are integrated into. SCHC also employs a sub-cooled refrigerant passages at the end of the condenser in order to supply perfect liquid refrigerant to the expansion unit. Throughout the present study, it was found that the developed SCHC increases in the degree of sub-cooling by 10~100% compared to conventional condenser. The excessive sub-cooling has improved the cooling performance by 10%, and that leads reduction in evaporator outlet air temperature by $1.5^{\circ}C$. Also found through the study is that the refrigerant pressure drop across SCHC is fairly increased due to insertion of the desiccant cartridge in the receiver tank which is composed of zeolite, filter and supporter plate.

DEVELOPMENT OF METAL FOAM FILTER BY USING CUSTOMIZED DESIGN PROGRAM (설계전용프로그램을 이용한 금속폼 필터 개발)

  • Lee, J.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.446-447
    • /
    • 2010
  • 최근 개발된 니켈 초합금 금속폼은 기존의 매연저감장치 신소재로 여겨지고 있다. 금속폼은 세가지 두드러진 특징을 갖고 있다. 첫째, 금속폼은 큰 기공의 다공성 매질로써 매연을 포집하여 축적할 수 있는 용량이 기존 필터에 비해 상대적으로 크며 그로인하여 재생 시 연소 안전성이 두드러진다. 둘째, 복잡하고 굴곡있는 기공 구조와 큰 비표면적은 물질전달 특성을 향상시켜 촉매 적용 시 촉매의 전환성능을 향상시키고 그로 인하여 귀금속 촉매량을 줄일 수 있는 장점이 있다. 셋째, 금속폼은 다양한 기공크기를 가지며, 다양한 조합의 금속폼을 개발할 수 있어 요구 성능에 따른 최적의 필터 설계를 가능케 한다. 이번연구에서는, 금속폼의 필터 성능을 다양한 실험을 통하여 측정 평가하며, 이런 이해를 기반으로 필터로 제작하여 엔진실험벤치에서 그 성능을 검증하였다. 필터의 성능은 수트 포집효율과 그에 따른 필터의 압력강하와 촉매 활성 능력으로 평가되었다. 이러한 실험과 병행하여 금속폼에서의 수트 포집과정을 모델링하고 이를 상용 프로그램인 CFD-ACE+에 추가하여 설계전용 프로그램을 개발하였으며, 엔진실험결과와 비교 검증하였다. 본 논문에서는 금속폼의 높은 매연축적용량과 향상된 물질전달 특성이 어떻게 필터의 귀금속 촉매와 체적을 줄일 수 있는지 제시하고 있다.

  • PDF

An Experimental Study on the Aerodynamic Drag of Model Cars with Cooling Air Passage (냉각유동이 자동차항력에 미치는 영향에 관한 실험적 연구)

  • 안이기;정형호;김광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.405-413
    • /
    • 1994
  • This paper presents the experimental results of aerodynamic drags of model cars. The effects of cooling air on total drag were introduced by using momentum theorem. Vehicle-liked Ahmed body and 1/5 model car were used to evaluate the increments of drags due to the internal flow. The results were compared with momentum theorem and other's experiments and showed good agreements. In the case of Ahmed body, drags were increased by 22% due to the internal flow and decreased linealy by reducing internal air flow rates and inlet areas. The experiments on 1/5 model car with ill-defined air flow passage showed 10% increment of drag. The results of present study showed that cooling drag could be predicted by momentum theorem within small errors.

Performance Characteristics of Sub-Cooled Hybrid Condenser in Automotive Air-Conditioning System (자동차 공조시스템에서 건조기 일체형 응축기의 성능특성)

  • 김경훈;김석우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.205-210
    • /
    • 2004
  • Sub-cooled hybrid condenser(SCHC) which have been developed through this study is an appliance of integrating a condenser with a receiver dryer, which were previously separated. It is supposed that the development of sub-cooled hybrid condenser will be able to reduce not only weight, size, production process and cost, but also quite improve in capability, which will be of great use for the technological development and research of an air conditioning system whose importance is higher in a car. Through the present study it was found that the developed SCHC increases in the degree of sub-cooling by 10∼100% compared to conventional condenser. The excessive sub-cool has improved the cooling performance by 10%, and that leads to the reduction in evaporator outlet air temperature $1.5^{\circ}C$. Additionally, it is expected that sub-cooled hybrid condenser weights less by 100g than the previous condensers which has equal super heat.

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.

Numerical Study of Gap Size Ratio Effect for Noncondensable Gas Ventilation in Condensers (응축기의 비응축 가스 배출 타입에 따른 틈 간격 비율의 영향에 대한 수치적 연구)

  • Je, Jun-Ho;Kim, Soo-Jea;Choi, Chi-Woong;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • A numerical analysis was carried out to estimate the effect of the gap size ratio on the performance of condensers under noncondensable gas ventilation using the porous medium approach (PMA). In the PMA, the details of the tube bundle in the condenser are considered to be those of a porous medium, and the flow resistance term is added in the momentum equation. Three-dimensional analysis of the condensation for a McAllister condenser was conducted with the PMA using Fluent and user-defined functions (UDFs). The gap size effect on the condensation was negligible under pure steam conditions. However, the gap size effect was dominant in condensation with noncondensable gas and external venting. As the gap size decreased, the condensation rate increased for noncondensable gas in an external venting system.

A Study on Shape Optimization of Cooling Channel in Hollow Shaft for In-wheel Motor (대용량 인휠 모터용 중공축 냉각유로의 형상 최적화에 관한 연구)

  • Lim, Dong Hyun;Kim, Dong-Hyun;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.72-80
    • /
    • 2013
  • For the proper cooling of in-wheel motor, the cooling channel should have the characteristics which are low pressure drop and adequate cooling oil supply to motor part. In this study, the flow performance of cooling channel for in-wheel motor was evaluated and the shape of the channel was optimized. First, the pressure drop and flow distribution characteristics of the initial channel model were evaluated using numerical analysis. Also, by the result of analysis and design modification, 4 design parameters of the channel were selected. Second, using the Taguchi optimal method, the cooling channel was optimized. In the method, nine models with different levels of the design parameters were generated and the flow characteristics of each models was estimated. Base on the result, the main effect of the design parameters was founded and optimized model was obtained. For the optimized model, the pressure drop and oil flow rate were about 0.196 bar and 0.207 L/min, respectively. The pressure drop decreased by about 0.3 bar and the oil flow rate to the motor part increased by about 0.2 L/min compared to the initial model.

Adsorption Characteristics of Reverse Stratified Tapered Adsorber (역층상 점증형 흡착탑에서의 흡착특성)

  • Lee, Seung-Mok;Kim, Dae-Hyun;Lee, II-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1861-1867
    • /
    • 2000
  • Granular activated carbon(GAC) adsorption is one of the best available technology to remove synthetic organic chemicals(SOCs) from water supplies and wastewater. In order to satisfy enviromental criteria and reduce GAC treatment cost, optimal study of reverse stratified tapered adsorber(RSTA) has been conducted. The RSTA was found to provide on increase in breakthrough time when compared to a conventional cylindrical adsorber(CA). Through the RSTA optimal experiment, optimal mean bed velocity was decided 19.10cm/min and optimal angle was decided RSTA($3.0^{\circ}$). Adsorption efficiency was increased with increasing activated carbon doses and the number of activated carbon layers.

  • PDF

Effects of Baffle Location on the Performance of a Super Compact Condenser in an Automotive Air Conditioning System (자동차용 에어컨의 고밀도 응축기(SCC)에서 배플의 위치 변화에 따른 성능향상에 관한 연구)

  • 이명재;박복춘;백병준;염동석;한창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.128-140
    • /
    • 1997
  • A new super compact condenser(SCC), which has been developed recently is especially suitable for an alternative refrigerant HFC-134a due to its high performance and compactness. The SCC is composed of two pipe headers, baffles, narrow multi-rectangular channels, and louvered fin arrays. Alternating inlet and outlet by the inserted baffles in pipe headers guide refrigerant to and from the narrow multi-rectangular channels. Since the flow rate and its lengh are changed depending on the number and location of baffles, the corresponding pressure drop and heat transfer rate are changed. The present study aims to theoretically and experimentally investigate the effects of baffle location and its number on the pressure drop and thermal performance of the SCC with 40 multi-rectangular channels. The results show that the present method provides an acceptable prediction of pressure drop and heat transfer rate for a 4 pass SCC. However, the model significantly under predicts the performance of a 3 pass SCC, which may be attributed to the phase separation of refrigerant flowing through header pipes. Pressure drop is more signifi- cantly influenced than heat transfer rate by the baffle location.

  • PDF

Prediction of Complex Turbulent Flows in Can-type Gas Turbine Combustor and Scroll (원통형 가스터빈 연소기와 Scroll 내부유동장 해석)

  • 김용모;김성구;김명환;민대기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.9-9
    • /
    • 1998
  • 가스터빈 연소기의 난류유동장을 구성하는 기본적인 유동형태는 크게 밀폐관내의 돌연 확대를 가지는 동축제트, 선회유동, 그리고 연소공기공 및 회석공기공을 통해 연소실에 수직방향으로 유입되는 제트유동 등으로 분류할 수 있다. 실제 가스터빈 연소기내의 난류유동장을 수치해석하기 위해서는 임의의 형상을 갖는 3차원 유동장을 모사할 수 있는 수치해석법과 고차정확도를 유지하면서도 수렴안정성을 만족시키는 대류항 처리기법 등과 같은 수치모델의 개발이 선행되어야 하며, 이와 함께 복잡한 난류연소유동장을 정확히 묘사할 수 있는 난류모델 및 난류연소모델의 개발 및 검증이 가장 중요한 요인이 된다. 또한 가스터빈 연소기의 최적 설계는 넓은 작동구간에서 높은 효율, NOx 및 CO 배기량의 저감, 희박연소 가연한계의 확장, 연소계통에서의 낮은 압력강하, 낮은 연소벽면온도와 온도구배를 유지시키기 위한 공기에 의한 충분한 냉각 같은 서로 상충되는 설계조건을 만족해야 한다. 그리고, 이러한 상충된 연소설계조건들을 충족시키는 최적 연소기의 설계를 위해서는 실험적인 연구뿐만 아니라 연소기내의 물리적인 현상을 잘 반영할 수 있는 물리적 모델을 바탕으로 한 연소유동의 해석적인 연구를 필요로 한다. 본 연구에서는 원통형 가스터빈 연소기의 등온 및 연소유동장, 그리고 연소기와 연결되는 Scroll 내부의 난류유동장에 대한 수치해석을 수행하여 수치 및 물리모델의 예측능력을 검증하였고, 가스터빈 연소유동장 해석에 관련된 중요 논점들에 대하여 심도있게 분석하였다.

  • PDF