• Title/Summary/Keyword: 암호흡

Search Result 31, Processing Time 0.021 seconds

Shading Effects on the Growth and Physiological Characteristics of Osmanthus insularis Seedlings, a Rare Species (희귀 식물 박달목서 유묘의 생장 및 생리적 특성에 대한 차광 효과)

  • Da-Eun Gu;Sim-Hee Han;Eun-Young Yim;Jin Kim;Ja-Jung Ku
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.88-96
    • /
    • 2024
  • This study was conducted to determine the optimal light conditions for the in situ and ex situ conservation and restoration of Osmanthus insularis, a rare plant species in South Korea. Evaluations included the growth performance, leaf morphological features, photosynthetic characteristics, and photosynthetic pigment contents of seedlings grown from April to November under different light conditions (100%, 55%, 20%, and 10% relative light intensity). The shoot lengths and root collar diameters did not differ significantly with relative light intensity. The dry weights of leaves, stems, and roots and the leaf number were highest at 55% relative light intensity. The leaf shape showed morphological acclimation to light intensity, with leaf area decreasing and thickness increasing as the relative light intensity increased. Several leaf parameters, including photosynthetic rate and stomatal conductance at light saturation point, net apparent quantum yield, and dark respiration, as well as chlorophyll a, chlorophyll b, and carotenoid contents, were all highest at 55% relative light intensity. Under full light conditions, the leaves were the smallest and thickest, but the chlorophyll content was lower than at 55% relative light intensity, resulting in lower photosynthetic ability. Plants grown at 10% and 20% relative light intensity showed lower chlorophyll a, chlorophyll b, and carotenoid contents, as well as decreased photosynthetic and dark respiration rates. In conclusion, O. insularis seedlings exhibited morphological adaptations in response to light intensity; however, no physiological responses indicating enhanced photosynthetic efficiency in shade were evident. The most favorable light condition for vigorous photosynthesis and maximum biomass production in O. insularis seedlings appeared to be 55% relative light intensity. Therefore, shading to approximately 55% of full light is suggested for the growth of O. insularis seedlings.

Correlation Between Relative Light Intensity and Physiological Characteristics of Forsythia saxatilis in Bukhansan Natural Habitats (북한산 산개나리의 자생지 내 상대 광량과 생리적 특성간 상관 관계)

  • Han, Sim-Hee;Kim, Gil Nam;Kim, Du-Hyun;Kim, Kyung-Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.236-243
    • /
    • 2012
  • The leaf growth and physiological characteristics of Forsythia saxatilis were investigated at six natural habitats under different light intensities in Bukhansan in order to figure out an appropriate growth environment for conservation and restoration of F. saxatilis that is Korean endemic plant designated as rare and endangered species. Relative light intensities (RLI) at six habitats showed from 10% to 78% of the full sun. Leaf length, leaf width, leaf area and dry leaf weight of population under highest relative light intensity (78%) were the highest. The ratio of dry leaf weight to leaf area increased with the increase of RLI. The content of photosynthetic pigments such as chlorophyll a, b and carotenoid were the highest at 78% of RLI, whereas the ratio of total chlorophyll to carotenoid content reduced according to the increase of RLI. Photosynthetic parameters, such as photosynthetic rate, also increased with the increase of RLI. The total nonstructural carbohydrate (TNC) was 1.5 times higher at 78% of RLI than that at 10% of RLI and the total soluble sugar (TSS) was the highest at 78% of RLI. In conclusion, leaf characteristics and physiological characteristics have high positive correlation with light intensity. Therefore, light condition should be primarily considered to improve growth and physiology characteristics of F. saxatilis under low light intensity.

Optimum Light Intensity and Fertilization Effects on Physiological Activities of Forsythia saxatil (산개나리의 생리적 활성에 대한 최적 광도 조건과 시비 효과)

  • Kim, Gil Nam;Han, Sim-Hee;Kim, Du Hyun;Yun, Chung-Weon;Shin, Soo Jeong
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.372-381
    • /
    • 2013
  • The leaf growth and physiological characteristics of Forsythia saxatilis were investigated under different relative light intensities (RLI) and fertilization levels in order to find out the optimum environmental conditions for in-situ restoration. RLI and fertilization were four levels (30%, 43%, 63% of full sun and full sun) and three levels (non-fertilization, 2 times and 3 times of average forest soil in Korea), respectively. According to the increase of fertilization level under all RLI, leaf area increased and leaf dry weight and the ratio of leaf dry weight to leaf area decreased. As the fertilization level increased, photosynthetic pigment contents such as chlorophyll a, b and carotenoid under all RLI decreased. And pigment contents were the highest under full sun in the same fertilization level. Foliar nitrogen content under fertilization was higher than that under non-fertilization, and chlorophyll/nitrogen ratio decreased with the increase of fertilization level under all RLI. The increase of photosynthetic rate was observed with the increase of fertilization level at 63% of RLI and full sun, and dark respiration rate under fertilization was lower than under non-fertilization. Apparent quantum yield was lower at non-fertilization than that of fertilization, and it was highest at 63% of RLI under the same fertilization level. In conclusion, leaf growth and physiological characteristics of F. saxatilis could be improved under higher light conditions and fertilization.

Physiological Responses of Bupleurum latissimum Nakai, Endangered Plants to Changes in Light Environment (광환경조절에 따른 멸종위기식물 섬시호의 생리적 반응)

  • Lee, Kyeong-Cheol;Wang, Myeong-Hyeon;Song, Jae Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2013
  • This study was conducted to investigate the physiological responses of Bupleurum latissimum, endangered plants by light condition. We investigated photosynthetic parameters, chlorophyll contents and chlorophyll fluorescence under different shading treatments (Shaded 50%, 70%, 90% and non-treated). Results showed that net apparent quantum yield (AQY) and chlorophyll contents were significantly increased with elevating shading level. However, light compensation point (LCP) and dark respiration ($R_d$) were shown the opposite trend. Especially, non-treated exhibited photoinhibition such as reduction of chlorophyll contents and maximum photosynthesis rate ($Pn_{max}$) also variation trend of stomatal conductance ($g_s$), and transpiration rate (E) were decreased to prevent water loss. Photosynthetic rate ($P_{Nmax}$) and photochemical efficiency (Fv/Fm) of 90% treatment showed a drastic reduction in July. This implies that photosynthetic activity will be sharply decreased with a long period of low light intensity. The 50% treatment showed relatively higher photosynthetic activity than other treated. This result suggested that growth and physiology of B. latissimum adapted to 50% of full sunlight.

Physiological Characteristics and Diural Changes of Photosynthesis in Japonica and Tongil Type Rice (벼 자포니카 및 통일형 품종의 광합성의 일중변화와 생리적 특성)

  • 허훈;류경열;양덕조
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.3
    • /
    • pp.237-244
    • /
    • 1994
  • To elucidate the physiological characteristics of 2 japonica type and 2 tongil type of rice cultivars, photosynthesis, respiration and diurnal changes of photosynthesis rate had been investigated 6 times at each growing stage. The ratios of photosynthetic part of tongil types were higher than those of japonica types at tillering stage. The highest photosynthetic activity was measured on August 1, before heading in each growing stage, and efficiency of photosynthesis showed its the highest on July 25. Diurnal photosynthetic curve at heading stage reached the peak at 11-12 AM, but after 2 weeks from heading stage, the peak apperred at 1-2 PM. Conversion of respiration into photosynthesis for $CO_2$ fixation started 30~60 minutes later than the standard sunrise time and reconversion for carborhdrate accmulation began 50~60 minutes earlier than the standard sunset time. Photosynthesis showed positive correlation with chlorophyll content and root activity. Harvest index of tongil type cultivars were significantly higher than those of japonica type cultivars.

  • PDF

Characteristics of Photosynthesis of Dwarf and Street Tree Cultivars of Hibiscus syriacus L. (분화용 및 가로수형 무궁화 품종의 광합성 특성)

  • Cho, Yoon-Jin;Park, Hyung-Soon;Chang, Yong-Seock;Shin, Man-Yong;Chung, Dong-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • This study was conducted to find characteristics of photosynthesis for dwarf and street tree cultivars of Hibiscus syriacus L. Characteristics of growth and flowering on some cultivars were investigated. The photosynthetic capacity for the cultivars was also measured. Bulsae showed the best height increase; Soyang represented the lowest growth. Baektanshim ${\times}$ Kyungbuk1 had the largest number of branches and leaves. Sundeok and Bulsae were the best in terms of height and width of flower, Soyang showed the smallest flowers. According to the analysis of chlorophyll content (chlorophyll a, b, total) for the cultivars, there was little difference between Sundeok and Bulsae. Based on light response curves for cultivars, it was found that Baektanshim ${\times}$ Kyungbuk1 and Soyang had lower light compensation and light saturation points than Bulsae and Sundeok. Cultivars Baektanshim ${\times}$ Kyungbuk1 and Soyang were also low in dark respiration, photosynthetic capacity, and net apparent quantum yield. In conclusion, it is recommended that cultivars Baektanshim ${\times}$ Kyungbuk1 and Soyang might be used as a dwarf type due to photosynthetic capacity.

Effects on Growth, Photosynthesis and Pigment Contents of Liriodendron tulipifera under Elevated Temperature and Drought (온도 증가와 건조 스트레스가 백합나무의 생장, 광합성 및 광색소 함량에 미치는 영향)

  • Kim, Gil Nam;Han, Sim-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This study was conducted to investigate the effects of high temperature and drought on growth performance, photosynthetic parameters and photosynthetic pigment contents of Liriodendron tulipifera L. seedlings. The seedlings were grown in controlled-environment growth chambers with combinations of four temperature ($-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$, $+6^{\circ}C$; based on the monthly average for 30 years in Korea) and two water status (control, drought). Temperature rise increased growth, total dry weight and leaf area in all water status. Also photosynthetic rate, dark respiration, stomatal conductance and transpiration rate increased with increasing temperature. In contrast, growth and photosynthetic parameters of L. tulipifera seedlings were lower in $-3^{\circ}C$ than $0^{\circ}C$. But temperature rise decreased water use efficiency in all water status. Temperature rise increased photosynthetic pigment contents of leaf. Also chlorophyll a/b ratio increased with increasing temperature. In conclusion, the elevated temperature lead to causes growth increase through the increase of energy production by higher photosynthetic rate during a growth period of L. tulipifera seedlings.

Physiological Response and Growth Performance of Parasenecio firmus under Different Shading Treatments (차광처리에 따른 병풍쌈의 생리반응 및 생장특성)

  • Lee, Kyeong-Cheol;Lee, Hak-Bong;Park, Wan-Geun;Han, Sang-Sup
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.2
    • /
    • pp.79-89
    • /
    • 2012
  • This study was conducted to investigate the chlorophyll contents, photosynthetic characteristics, chlorophyll fluorescence, and growth performance of Parasenecio firmus under changing light environment. Parasenecio firmus was grown under non-treated (full sunlight) and three different shading conditions (88~93%, 65~75% and 45%~55% of full sunlight) for the experiment. Total chlorophyll content, photochemical efficiency (Fv/Fm), T/R ratio, specific leaf area (SLA), leaf area ratio (LAR), and leaf weight ratio (LWR) were increased with increasing shading level, but decreased dark respiration. Therefore, light absorption and light utilization efficiency were improved under the low intensity light. Plants under 65~75% of full sunlight had best maximum photosynthetic rate and net apparent quantum yield in May. On the other hand, the non-treated plants had lower maximum photosynthetic rate, photochemical efficiency, and chlorophyll content than the treated ones. Parasenecio firmus considered to be a sciophyte, is fairly sensitive to high intensity light. If 88-93% of full sunlight lasts for a long period, photosynthetic capacity will be sharply decreased, though limiting light. These results suggest that growth of Parasenecio firmus adapted to 65~75% of full sunlight.

Photosynthesis and Chlorophyll Fluorescence of Evergreen Hardwoods by Drying Stress (건조 스트레스가 난대 상록활엽수의 광합성 반응 및 엽록소 형광반응에 미치는 영향)

  • Jin, Eon-Ju;Yoon, Jun-Hyuk;Bae, Eun-Ji;Choi, Myung-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.196-207
    • /
    • 2019
  • This study was carried out to investigate the effects of C. japonica, D. morbifera, D. macropodum, I. anisatum, Q. glauca and R. indica To investigate the photosynthetic ability, chlorophyll content, chlorophyll fluorescence analysis, and physiological environmental. The photosynthetic rate, cancer respiration rate, stomatal conductance, and rate of evaporation tended to decrease as a result of drying stress in the no-water condition for 28 days. I. anisatum, Q. glauca and R. indica showed a low rate of less than 40% until 28 days of no-treatment. The total chlorophyll contents were decreased in the order of D. macropodum> D. morbifera> C. japonica> Q. glauca> M. thunbergii> R. indica> I. anisatum. Chlorophyll fluorescence analysis showed that there was no change in the qP, but after 28 days no $Fv/F_m$, $F_o$, $R_{fd}$, $NPQ_{_-LSS}$ can be a useful indicator for quantitative estimation within a short period of time with a marked reduction rate of PSII quantum yield ${\Phi}PSII$ in the rectified state by continuous light during the nominal adaptation period. In the case of I. anisatum, Q. glauca and R. indica If water management can be carried out at intervals, it may be possible to plant trees in trees and landscape trees.

Photosynthetic Activity of Quercus acutissima Seedlings Grown under Artificially Acidified Soil Conditions (토양산성화 조건하에서 생육시킨 상수리나무 묘목의 광합성 활성)

  • Jin, Hyun-O;Bang, Sun-Hee;Lee, Choong-Hwa
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.843-848
    • /
    • 2010
  • The effects of soil acidification on the photosynthetic activity of Quercus acutissima seedlings were investigated. We measured the growth and photosynthetic activity of the seedlings in relation to soil acidification. The dry weights of the seedlings were reduced according to the amount of $H^+$ in the soil. The concentrations of Al in needles at the 90 meq $H^+$ were significantly higher than those at the control. The contents of chlorophyll in needles at 90 meq $H^+$ were significantly lower than those at the control. The net photosynthetic rates of the seedlings in the acidified soil were reduced by increasing the amount of $H^+$ to the soil. The carboxylation efficiencies(CE) of photosynthesis were reduced in the seedlings grown in the acidified soil. These results suggested that the soil acidification induced the inhibition of photochemical reactions and $CO_2$ fixation of photosynthesis.