Correlation Between Relative Light Intensity and Physiological Characteristics of Forsythia saxatilis in Bukhansan Natural Habitats

북한산 산개나리의 자생지 내 상대 광량과 생리적 특성간 상관 관계

  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Gil Nam (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Du-Hyun (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Kyung-Hee (Bukhansan National Park Dobong Office, Korea National Park Service)
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 김길남 (국립산림과학원 산림유전자원부) ;
  • 김두현 (국립산림과학원 산림유전자원부) ;
  • 김경희 (국립공원관리공단 북한산국립공원도봉사무소)
  • Published : 2012.06.30

Abstract

The leaf growth and physiological characteristics of Forsythia saxatilis were investigated at six natural habitats under different light intensities in Bukhansan in order to figure out an appropriate growth environment for conservation and restoration of F. saxatilis that is Korean endemic plant designated as rare and endangered species. Relative light intensities (RLI) at six habitats showed from 10% to 78% of the full sun. Leaf length, leaf width, leaf area and dry leaf weight of population under highest relative light intensity (78%) were the highest. The ratio of dry leaf weight to leaf area increased with the increase of RLI. The content of photosynthetic pigments such as chlorophyll a, b and carotenoid were the highest at 78% of RLI, whereas the ratio of total chlorophyll to carotenoid content reduced according to the increase of RLI. Photosynthetic parameters, such as photosynthetic rate, also increased with the increase of RLI. The total nonstructural carbohydrate (TNC) was 1.5 times higher at 78% of RLI than that at 10% of RLI and the total soluble sugar (TSS) was the highest at 78% of RLI. In conclusion, leaf characteristics and physiological characteristics have high positive correlation with light intensity. Therefore, light condition should be primarily considered to improve growth and physiology characteristics of F. saxatilis under low light intensity.

본 연구의 목적은 우리나라 특산식물이며, 희귀멸종위기식물인 산개나리의 유전자원 보존 및 복원을 위한 생육 환경 특성을 구명하기 위한 것으로, 서로 다른 광 조건을 가진 북한산 산개나리 개체군의 생장 및 생리적 특성을 조사 분석하였다. 산개나리 각 개체군의 광량은 전광의 10%에서 78%의 범위로 매우 다양하였다. 북한산 산개나리의 잎 길이, 잎 폭, 잎 면적 및 건중량은 광량이 높을수록 증가하였으며, 잎 건중량과 면적의 비도 광량이 높을수록 증가하였다. 산개나리 잎의 엽록소 a와 b의 함량과 카로테노이드 함량 모두 전광의 78% 광량을 가진 개체군에서 가장 높았으며, 총 엽록소 함량과 카로테노이드 함량의 비는 전광의 10% 광량을 가진 개체군에서 가장 높았다. 산개나리 개체군별 광합성 속도는 전광의 78% 광량을 가진 개체군이 전광의 10% 개체군보다 2배 이상 높았으며, 기공전도도, 증산속도, 암호흡 속도 및 순양자수율도 전광의 78% 광량을 가진 개체군에서 가장 높았다. 산개나리 잎에서 측정한 총 비구조 탄수화물 함량은 전광의 78% 광량을 가진 개체군에서 전광의 10% 광량을 가진 개체군보다 1.5배 이상 높았으며, 총 수용성 당 함량도 전광의 78% 광량을 가진 개체군에서 가장 높았다. 결론적으로 자생지에서 생장하는 산개나리의 생장과 생리적 특성은 광량과 정의 상관을 가지므로, 낮은 광량에서 자라는 산개나리 개체군의 생장과 생리적 특성을 개선하기 위해서는 광량이 우선적으로 고려되어야 한다.

Keywords

References

  1. 김태중, 최종인, 신공식, 백기엽. 2000. 온도와 광도 차이가 Doritaenopsis 'Happy Valentine'의 광합성과 탄수화물 함량에 미치는 영향. 한국원예학회지 41: 221-225.
  2. 김판기, 이용섭, 정동준, 우수영, 성주한, 이은주 2001. 광도가 내음성이 서로 다른 3수종의 광합성 생리에 미치는 영향. 한국임학회지 90: 476-487.
  3. 김판기, 이은주 2001. 광합성의 생리생태(2) -환경변화에 대한 광합성의 적응 반응 - 한국농림기상학회지 3: 171-176.
  4. 이병천. 2008. 한국 희귀식물 목록집. 산림청 국립수목원. pp. 332.
  5. 이상태, 김무열, 홍석표. 1982. 개나리(Forsythia koreana Nakai)와 산개나리(F. saxatilis Nakai)의 분류학적 연구. 한국식물분류학회지 12: 51-62.
  6. 이유미, 이원열. 2000. 희귀 및 멸종위기 식물도감. 산림청 국립수목원. pp. 255.
  7. 이창복. 1980. 대한식물도감. 향문사. pp. 990.
  8. 정진현, 구교상, 이충화, 김춘식. 2002. 우리나라 산림토양의 지역별 이화학적 특성. 한국임학회지 91: 694-700.
  9. 한심희, 김두현, 김길남, 변재경. 2011. 광량 차이에 의한 산개나리의 엽 특성과 광색소 함량 및 광합성 변화. 한국임학회지 100: 609-615.
  10. 한심희, 이재천, 이위영, 박영기, 오창영, 김종갑. 2006. 폐석지내 광 저해에 대한 사방오리나무 잎의 항산화 보호, 한국임학회지 95: 124-130.
  11. Adams, W.W., Winter, K., Schreiber, U. and Schramel, P. 1990. Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence. Plant Physiology 93: 1184-1190.
  12. Boardman, N.K. 1977. Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology 28: 355-377. https://doi.org/10.1146/annurev.pp.28.060177.002035
  13. Chazdon, R.L. and Kaufmann, S. 1993. Plasticity of leaf anatomy of two rain forest shrubs in relation to photosynthetic light acclimation. Functional Ecology 7: 385-394. https://doi.org/10.2307/2390025
  14. Cooper, C.S. and Qualls, M. 1967. Morphology and chlorophyll content of shade and sun leaves of two legumes. Crop Science 7: 672-673. https://doi.org/10.2135/cropsci1967.0011183X000700060036x
  15. Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9-19. https://doi.org/10.1007/BF00377192
  16. Fetcher, N., Strain, B.R. and Oberbauer, S.F. 1983. Effects of light regime on the growth, leaf morphology, and water relations of seedlings of two species of tropical trees. Oecologia 58: 314-319. https://doi.org/10.1007/BF00385229
  17. Frak, E., Le Roux, X., Millard, P., Adam, B., Dreyer, E., Escuit, C., Sinoquet, H., Vandame, M. and Varlet-Grancher, C. 2002. Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration. Journal of Experimental Botany 378: 2207-2216.
  18. Goncalves, B., Correia, C.M., Silva, A.P., Bacelar, E.A., Santos, A. and Moutinho-Pereira, J.M. 2008. Leaf structure and function of sweet cherry tree (Prunus avium L.) cultivars with open and dense canopies. Scientia Horticulturae 116: 381-387. https://doi.org/10.1016/j.scienta.2008.02.013
  19. Han, S.H., Kim, D.H., Byun, J.K. and Jang, K.H. 2011. Major reason for the current decline of the rare and endangered Forsythia saxatilis population at Bukhansan: habitat deterioration. Proceedings of the International Symposium for Strategy on Development of Forest Genetic Resources against Climate Change. May 30-June 3, 2011, Ramada Plaza Hotel, Suwon, Korea. Korea Forest Research Institute. pp. 181.
  20. Hansen, U., Fiedler, B. and Rank, B. 2002. Variation of pigment composition and antioxidative systems along the canopy light gradient in a mixed beech/oak forest: a comparative study on deciduous tree species differing in shade tolerance. Tree 16: 354-364. https://doi.org/10.1007/s00468-002-0163-9
  21. Hendry, G.A.F. and Price, A.H. 1993. Stress indicators: cholrophylls and carotenoids. pp. 148-152. In: Hendry G. A. F. and Grime, J. P. ed. Methods in Comparative Plant Ecology: A Laboratory Mannual. Chapman & Hall.
  22. Hikosaka, K. and Terashima, I. 1995. A model of the acclimation of photosynthesis in the leaves of $C_3$ plants to sun and shade with respect to nitrogen use. Plant Cell Environment 18: 605-618. https://doi.org/10.1111/j.1365-3040.1995.tb00562.x
  23. Hikosaka, K. and Terashima, I. 1996. Nitrogen partitioning among photosynthetic components and its consequence in sun and shade plants. Functional Ecology 10: 335-343. https://doi.org/10.2307/2390281
  24. Hikosaka, K., Hanba, Y.T., Hirose, T. and Terashima, I. 1998. Photosynthetic nitrogen-use efficiency in leaves of woody and herbaceous species. Functional Ecology 12: 896-905. https://doi.org/10.1046/j.1365-2435.1998.00272.x
  25. Hiscox, J.D. and Israelstam, G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332-1334. https://doi.org/10.1139/b79-163
  26. Hovenden, M.J. and Vander Schoor, J.K. 2006. The response of leaf morphology to irradiance depends on altitude of origin in Nothofagus cunninghamii. New Phytologist 169: 291-297. https://doi.org/10.1111/j.1469-8137.2005.01585.x
  27. James, S.A. and Bell, D.T. 2000. Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances. Tree Physiology 20: 1007-1018. https://doi.org/10.1093/treephys/20.15.1007
  28. Johnson, J.D., Tognetti, R., Michelozzi, M., Pinzauti, S., Minotta, G. and Borghetti, M. 1997. Ecophysiological responses of Fagus sylvatica seedlings to changing light conditions. II. The interaction of light environment and soil fertility on seedling physiology. Physiologia Plantarum 101: 124-134. https://doi.org/10.1111/j.1399-3054.1997.tb01828.x
  29. Jung, S. and Steffen, K.L. 1997. Influence of photosynthetic photon flux densities before and during long-term chilling on xanthophyll cycle and chlorophyll fluorescence quenching in leaves of tomato (Lycopersicon hirsutum). Physiologia Plantarum 100: 958-966. https://doi.org/10.1111/j.1399-3054.1997.tb00023.x
  30. Kayama, M., Sasa, K. and Koike, T. 2002. Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology 22: 707-716. https://doi.org/10.1093/treephys/22.10.707
  31. Kramer, P.J. and Kozlowski, T.T. 1979. Physiology of woody plants. A.P., New York. pp. 811.
  32. Mendes, M.M., Gazarini, L.C. and Rodrigues, M.L. 2001. Acclimation of Myrtus communis to contrasting Mediterranean light environments - effects on structure and chemical composition of foliage and plant water relations. Environmental and Experimental Botany 45: 165-178. https://doi.org/10.1016/S0098-8472(01)00073-9
  33. Minkov, I.N., Jahoubjan, G.T., Denev, I.D. and Toneva, V.T. 1999. Photooxidative stress in higher plants. p. 499-525. In: M. Pessrakli, ed. Handbook of Plant and Crop Stress, 2ndedition. Marcel Decker, New York, Basel.
  34. Niinemets, U., Kull, O. and Tenhunen, J.D. 1998. An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology 18: 681-696. https://doi.org/10.1093/treephys/18.10.681
  35. Paynter, V.A., Reardon, J.C. and Shelburne, V.B. 1991. Carbohydrate changes in shortleaf pine (Pinus echinata) needles exposed to acid rain and ozone. Canadian Journal of Forest Research 21: 666-671. https://doi.org/10.1139/x91-090
  36. Reich, P.B., Tjoelker, M.G., Walters, M.B., Vanderklein, D.W. and Buschena, C. 1998. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology 12: 327-338. https://doi.org/10.1046/j.1365-2435.1998.00208.x
  37. Ryel, R.J., Barnes, P.W., Beyschlag, W., Caldwell, M.M. and Flint, S.D. 1990. Plant competition for light analyzed with a multispecies canopy model. I. Model development and influence of enhanced UV-B conditions on photosynthesis in mixed wheat and wild oat canopies. Oecologia 82: 304-310. https://doi.org/10.1007/BF00317475
  38. Smith, H. 1995. Physiological and ecological function within the phytochrome family. Annual Review of Plant Physiology and Plant Molecular Biology 46: 289-315. https://doi.org/10.1146/annurev.pp.46.060195.001445
  39. Terashima, I. and Evans, J.R. 1988. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant and Cell Physiology 29: 143-155.
  40. Terashima, I. and Hikosaka, K. 1995. Comparative ecophysiology of leaf and canopy photosynthesis. Plant, Cell and Environment 18: 1111-1128. https://doi.org/10.1111/j.1365-3040.1995.tb00623.x
  41. Zheng, Y., Lyons, T. and Barnes, J. 2000. Effects of ozone on the production and utilization of assimilates in Plantago major. Environmental and Experimental Botany 43: 171-180. https://doi.org/10.1016/S0098-8472(99)00056-8