• Title/Summary/Keyword: 암반구조물

Search Result 350, Processing Time 0.025 seconds

An Evaluation of the Influence of a Mixed Gas Explosion on the Stability of an Underground Excavation (혼합 가스폭발이 지하구조물 안정성에 미치는 영향 평가)

  • Kim, Minju;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.1-15
    • /
    • 2020
  • With the increase of the utilization of underground space in Korea, explosion accidents at the underground facilities such as gas pipes have occurred frequently. In urban area with high population density, individual explosion accidents are likely to spread into large complex accidents. It is necessary to investigate the effect of explosion on the stability of underground structures in urban area. In this study, a sensitivity analysis was carried out to investigate the possible influence of nearby explosion on the stability of underground structure with 8 parameters including explosion conditions and rock properties. From the sensitivity analysis using AUTODYN, the main and interaction effects of each parameters could be determined. From the analysis, it was found that the distance between explosion point and tunnel, charge weight, and Young's modulus are the most important parameters on the stress components around a tunnel.

The Characteristics of Long-term Deformation Behavior During Tunnel Excavation in the Pyroclastic Rock (화산쇄설암 구간에서 터널 공사 중 장기변형거동 특성 연구)

  • Jang, Sukmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.23-28
    • /
    • 2022
  • In Korea, 70% of the land is mountainous and structures occupy a high proportion in railway and road construction. In particular, in recent years, the construction of high-speed railways and highways for high-speed driving is rapidly increasing. At the same time, the construction of tunnels is also increasing. The number of tunnel construction cases in which long-term deformation occurs after tunnel excavation is completed is increasing. The stability of these tunnel structures depends entirely on the characteristics of the rock surrounding the tunnel excavation. In the case of pyroclastic rock, which is the subject of this study, it is generally vulnerable to weathering and has a characteristic that its strength decreases over a long period of time. Tunnel design and construction planning considering the strength characteristics of pyroclastic rocks are essential. This study analyzed the cases of over-deformation that occurred at the tunnel site in the pyroclastic section. Based on this study, a plan for tunnel design and construction management in an area where pyroclastic rock exist in the future is presented.

Investigating the Stress on Fault Plane Associated with Fault Slip Using Boundary Element Method (경계요소법을 이용한 단층 슬립에 따른 단층면 응력에 관한 연구)

  • Sung Kwon, Ahn;Hee Up, Lee;Jeongjun, Park;Mintaek, Yoo
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.598-610
    • /
    • 2022
  • Avoiding a fault zone would be a best practice for safety in underground construction, which is only sometimes possible because of many restrictions and other field conditions. For instance, there is an ongoing conception of Korea-Japan subsea tunnels that inevitably cross a massive fault system in the Korea Strait. Therefore it was deemed necessary to find an efficient way of predicting the likely behaviour of underground structures under fault slip. This paper presents the findings from simple numerical analysis for investigating the stress induced at a normal fault with a dip of 45 degrees. We used a boundary element software that assumed constant displacement discontinuity, which allowed the displacement to be estimated separately at both the fault's hangingwall and footwall sides. The results suggested that a principal stress rotation of 45 degrees occurred at the edges of the fault during the slip, which was in agreement with the phenomenon for fault plane suggested in the body of literature. A simple numerical procedure presented in this paper could be adopted to investigate other fault-related issues associated with underground structure construction.

Analysis of Mat Foundation by Considering Interface with Rock Mass (전면기초-하부암반 접촉면의 영향분석)

  • Lee, Jae-Hwan;Cho, Jae-Yeon;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.39-47
    • /
    • 2010
  • In recent days, the foundations of huge structures in general and mega foundations of grand bridges and high-rise buildings in particular are required in geotechnical engineering. This study described 3 dimensional behavior of mat foundation on soft rock based on a numerical study using 3D finite element method. A series of numerical analyses were performed for various soil conditions and mat rigidities under vertical loading. Based on the results of the parametric study, it is shown that the prediction of the settlement, cross sectional tensile stress and bending moments in the mat is overestimated in the analysis without considering interface behavior in comparison with the analysis considering interface between mat and rock mass.

Resistance Factors for Drilled Shafts Embedded in Weathered Rock (풍화암에 근입된 현장타설말뚝의 저항계수 산정)

  • Yoon, Hong-Jun;Jung, Sung-Jun;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.107-116
    • /
    • 2007
  • Load and Resistance Factor Design (LRFD) method is being used increasingly in geotechnical design practice worldwide, and is expected to completely replace the current Allowable Stress Design (ASD) method in the near future. LRFD has advantages over ASD in that it allows the design of superstructures and substructures at a consistent reliable level by quantification of failure probability based on reliability analysis. At present, resistance factors for cast-in-place piles embedded in rocks are determined by AASHTO only for the intact rock conditions. In Korea, however, most of the bedrocks in which piles are embedded are heavily weathered. Thus, this study will try to determine the resistance factors of heavily weathered rocks (so-called intermediate goo-materials). To this aim, reliability analysis was carried out to evaluate the resistance factors of cast-in-place piles embedded in intermediate geo-materials in Korea. Pile load test data of 21 cast-in-place piles of 4 construction sites were used for the analysis. Depending on the method which calculates the pile capacities, the resulting resistance factors ranged between 0.1 and 0.6.

Experiments for Efficiency of a Wireless Communication in a Buffer Material and Conceptual Design of THM Integrated Sensor System (완충재 내 무선 통신 효율 실험 및 THM 통합 센서 시스템 개념 설계)

  • Chang-Ho Hong;Jiwook Choi;Jin-Seop Kim;Sinhang Kang
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.267-282
    • /
    • 2024
  • This study aims to develop a wireless communication system for long-term monitoring of high-level radioactive waste disposal facilities. Conventional wired sensors can lead to a deterioration in buffer quality and management difficulties due to the use of cables for power supply and data transmission. This study proposes the adoption of a wireless communication system and compares the received signal strengths within bentonite using modules such as WiFi, ZigBee, and LoRa. Increases in dry density of bentonite and distance between transceivers led to reduced received signal strength. Additionally, using the low-frequency band exhibited less signal attenuation. Based on these findings, a conceptual design for a wireless network-based THM integrated sensor system was proposed. Results of this study can be used as foundational data for long-term monitoring of disposal facility.

Grouting Improvement through Correlation Analysis of Hydrogeology and Discontinuity Factors in a Jointed Rock-Mass (절리 암반의 수리지질 및 불연속면 특성 간 상관분석을 통한 그라우팅 계획 수립의 개선 방안)

  • Kwangmin Beck;Seonggan Jang;Seongwoo Jeong;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.279-294
    • /
    • 2024
  • Large-scale civil engineering structures such as dams require a systematic approach to jointed rock-mass grouting to prevent water leakage into the foundations and to ensure safe operation. In South Korea, rock grouting design often relies on the experience of field engineers that was gained in similar projects, highlighting the need for a more systematic and reliable approach. Rock-mass grouting is affected mainly by hydrogeology and the presence of discontinuities, involving factors such as the rock quality designation (RQD), joint spacing (Js), Lugeon value (Lu), and secondary permeability index (SPI). This study, based on data from field investigations of 14 domestic sites, analyzed the correlation between hydrogeological factors (Lu and SPI), discontinuity characteristics (RQD and Js), and grout take, and systematically established a design method for rock grouting. Analysis of correlation between the variables RQD, Js, Lu, and SPI yielded Pearson correlation (r) values as follows: Lu-SPI, 0.92; RQD-Lu, -0.75; RQD-Js, 0.69; RQD-SPI, -0.65; Js-Lu, -0.47; and SPI-Js, -0.41. The grout take increases with Lu and SPI values, but there is no significant correlation between RQD and Js. The proposed approach for grouting design based on SPI values was verified through analysis and comparison with actual curtain-grouting construction, and is expected to be useful in practical applications and future studies.

Study on the selection of TBM in consideration of field conditions (시공여건을 반영한 TBM선정 방법에 대한 연구)

  • Oh, Joon-Geun;Sagong, Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.125-133
    • /
    • 2014
  • In this study, TBM selection methods to meet soil and site conditions were presented. Factors and excavation equipment affecting TBM selection by soil and environmental condition were selected and classified. Weights between equipment and influencing factors selected were calculated by applying the AHP (Analytic Hierarchy Process) method. The results of the analysis influence factors, Ground condition was a major factor in objective factors and strength was a major factor in the hard condition of criteria factors and water pressure was a major factor in the soft ground condition of criteria factors. In Environment condition, existence of adjacent structures was evaluated more important than existence of feasible site. Lastly, Adequacy was verified through the deduction of results that coincide with input equipment by applying derived weights to actual site conditions.

Analysis of Perimetrical Ground Settlement Behavior for Deep Excavations in Urban Areas (도심지 깊은 굴착으로 발생하는 인접 지반 지표침하 분석)

  • 양구승;김명모
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.101-124
    • /
    • 1997
  • Adjacent ground surface settlements by deep excavations are analyzed by field observations in the areas where excavations are performed in sandy soils or weathered soils underlain by rocks, First, the magnitude and the distribution of ground surface settlements, which are developed before main excavation activities (e. g., diaphragm wall installation and center pile installation) , are measured and analyzed. Secondly, the magnitude and the distribution of ground surface settlements by main excavation are measured and analyzed. And the results are compared with the predictions obtained by the empirical methods. Through case studies performed on the excavation sites where adjacent ground surfaces or structures are damaged by excavation activities, upper limit location of ground surface cracks are investigated.

  • PDF

Study on Test Blasting Evaluation for KMRR Excavation and Vibration Evaluation of PIEF Subjected to Test Blasting (다목적연구용원자로 굴착을 위한 시험발파평가 및 조사후시험건물의 발파에 의한 진동영향평가에 관한 연구)

  • Yoo, Bong;Kim, Ung-Sik;Choi, Gang-Ryong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.125-128
    • /
    • 1990
  • 조사후 시험시설(Post Irradiated Examination Facility, PIEF)은 내진범주 1 급 구조물로서 현재 각종 실험 및 연구가 진행중인 원자력 안전관련시설물 이다. 한편 이 건물로부터 30m - 120m 정도 떨어져 있는 다목적연구로 (Korea Multipurpose Research Reactor, KMRR) 및 조사재시험시설 (Irradiation Material Examination Facility, IMEF)의 건조사업을 위하여 기 초암반의 굴착작업을 수행할 경우 발파작업에 따른 그 진동 및 폭풍압영향 이 염려되어, 그 안전성 평가를 위하여 시험발파를 수행해야 할 필요가 제기 되었다. 우선 운전중인 원자력안전 시설물에서의 발파에 따른 진동허용 기준 을 설정하고, 둘째로 거리에 따른 폭발량을 경험식에 따라 잠정 결정한 후, 세째로 시험발파에 의한 진동 측정을 수행하여 그 영향을 평가하고, 끝으로 이에 따라 거리별 제한 폭발량을 결정한후 실제 본발파에 적용하고자 한다. 이로써 운전중인 원자력 안전관련시설물인 PIEF의 안전 운전을 도모하고 KMRR및 IMEF 시설의 건조를 원만하게 이룰 수 있을 것이다.

  • PDF