• Title/Summary/Keyword: 암모니아 질소 및 인 동시 제거

Search Result 9, Processing Time 0.023 seconds

Inhibition Effects of $Ca^{2+}$ and $F^-$ Ion on Struvite Crystallization ($Ca^{2+}$$F^-$ 이온이 Struvite 결정화 반응에 미치는 영향)

  • Kim, Seung-Ha;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.730-737
    • /
    • 2010
  • It is very important to remove fluoride ion before treating semiconductor wastewater containing high concentration of ammonia, phosphates, and fluoride ions by struvite formation. Calcium ion was generally added for the removal of fluoride ion. However, calcium ions remained after removal of fluoride ion can deteriorate the performance of struvite crystalization. It should be removed completely before struvite formation. In this study, the effect of fluoride and calcium ion concentration on the struvite crystalization was investigated. Removal efficiencies of ortho-phosphate with struvite formation were more abruptly decreased than those of ammonium nitrogen, as increase of fluoride ion concentration in synthetic wastewater. The structures of struvite formed in synthetic wastewater containing calcium ion of up to 500 mg/L were identical. Purity of struvite was deteriorated as increase of calcium ion over 500 mg/L. Removal efficiencies of ammonium nitrogen were more decreased than those of phosphate ions as increase of cacium ion in synthetic wastewater.

Development of La(III)-zeolite Composite for the Simultaneous Removal of Ammonium Nitrogen and Phosphate in Confined Water Bodies (호소수내 암모니아성 질소 및 인 동시 제거를 위한 란탄-제올라이트 복합체 개발)

  • Paek, Joo-Heon;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.761-766
    • /
    • 2010
  • This study was aimed to propose La(III)-zeolite composite which can effectively and simultaneously remove ammonia and phosphate in confined water bodies such as lakes and ponds. The optimum ratio of La(III):zeolite for the simultaneous removal of ammonia and phosphate was 0.0048 La(III) g:1 zeolite g. The drying temperature of La(III)-zeolite composite severely affected phosphate adsorption showing optimum condition at room temperature. It was revealed that the optimum dosage of La(III)-zeolite composite was 4.052 g/L at adsorption time of 90 min. The presence of alkalinity in aqueous solution brought positive effect on phosphate adsorption. Detachment of La(III) from La(III)-zeolite composite, which was dried at room temperature, was not observed in aquous solution. It indicates that La(III)-zeolite composite could effectively block phosphate released from sediment.

Comparison of Removal Characteristics of Organic Matter, Nitrogen and Phosphorus Between Suspended-Growth and Attached-Growth Biological Processes (부유 및 부착성장 미생물을 이용하는 공정의 유기물, 질소 및 인 제거 특성 비교)

  • Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • This study was initiated to evaluate efficiencies of suspenced-growth processes(CAS; Conventional Activated Sludge, MLE; Modified Ludzack-Ettinger) and hybrid process(Modified-Dephanox) on removal of organic matter(C), nitrogen(N) and phosphorus(P) in municipal wastewater. M-Dephanox process was designed to improve the performance of Dephanox process on denitrification efficiency. As the results, removal efficiencies of total chemical oxygen demand(TCOD), total nitrogen(T-N) and total phosphorus(T-P) in M-Dephanox process, which is hybrid process, were 12,3, 18.6 and 28.2% higher than those in MLE, which is suspended-growth process. The better removal efficiencies of TCOD, T-N and T-P in M-Dephanox than those in MLE result that M-Dephanox is not only hybrid or multi-sludge process but also process using biosorption mechanism which is possible to use organics in denitrification, effectively. Ammonia removal efficiency in nitrification reactor of M-Dephanox was 96.7% at short hydraulic retention time(HRT) of 2 hr which was 3 hr more short HRT than that(HRT 5 hr) reported in other related papers. This indicates that M-Dephanox process can reduce HRT of whole process.

Simultaneous Removal of Organic Pollutants, Nitrogen, and Phosphorus from Livestock Wastewater by Microbubble-Oxygen in a Single Reactor (단일반응기에서 마이크로버블-산소를 이용한 가축분뇨의 유기오염물질, 질소 및 인의 동시 제거)

  • Jang, Jae Kyung;Jin, Yu Jeong;Kang, Sukwon;Kim, Taeyoung;Paek, Yee;Sung, Je Hoon;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.599-606
    • /
    • 2017
  • The effects of microbubble-oxygen physicochemical method for the removal of organic pollutants, nitrogen, and phosphorus contained in animal manure were investigated using a laboratory scale single reactor. The characteristics of used livestock manure were $36,894{\pm}5,024mg\;TCOD/L$, $22,031{\pm}2,018mg\;SCOD/L$, $4,150{\pm}35mg\;NH_4-N/L$, and $659{\pm}113mg\;PO_4-P/L$. It was confirmed that the amount of organic pollutants, nitrogen, and phosphorus removal was increased by the use of oxygen rather than air as the gas supplied with the microbubble, and by input of larger oxygen amount. When the oxygen was fed with 600 mL flow rate per minute, TCOD and phosphorus removal were 2.5 times and 5.6 times higher than those of air supplied. As the microbubble-oxygen reaction time was longer, the removal rate of nutrients increased gradually. The removal rates of ammonium and phosphorus reach to $41.03{\pm}0.20%$ and $65.49{\pm}1.39%$, respectively, after 24 hours. When the coagulation treatment method was applied to increase phosphorus removal rate from the effluent of microbubble-oxygen treatment, the phosphorus was removed up to 92.7%. However, the removal rate of organic pollutants (TCOD) was as small as $28.7{\pm}0.2%$ within the first 6 hours, and then the negligible removal of TCOD was recorded. This study suggests that microbubble-oxygen can be applied not only livestock manure but also aeration tank of various wastewater treatment plant, which can reduce the load on the associated unit process and produce stable high-quality effluent.

Wastewater Treatment and Microbial Structure Analysis by Fluorescence In Situ Hydridizationin a Biofilm Reactor (생물막 반응키에서의 폐수 처리 및 Fluorescence In Situ Hybridization에 의한 복합 미생물계 구조 해석)

  • Kim, Dong-Jin;Han, Dong-Woo;Lee, Soo-Choul;Park, Byeong-Gon;Kwon, Il;Sung, Chang-Keun;Park, Wan-Cheol
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.80-87
    • /
    • 2002
  • Laboratory scale aerobicfanaerobic biofilm reactor was used for simultaneous and stable removal of organics, N and P components to investigate optimum design and operation parameters and to analyze the microbial distribution and consortium structure of nitrification and denitrification bacteria in aerobic and anaerobic biofilm systems. The biofilm reactor was successfully operated for 143 days to show $COD_{cr},\;BOD_5$, SS removal efficiencies of 88, 88, and 97%, respectively. During the experiment period, almost complete nitrification efficiency of 96% was achieved. Denitrification efficiency was about 45% without addition of any external carbon sources. In case of total phosphorus removal, 74% of the inlet phosphorus was removed. Fluorescence in situ hybridization (FISH) results showed that most of the ammonia oxidizing bacteria in the aerobic nitrification zone was found to be Nitrosomonas species while Nitrospira was the representative nitrite oxidizing bacteria. For the denitrification, Rhodobacter, Rhodovulum, Roseebacter and Paracouus were the dominant denitrification bacteria which was 10 to 20% of the total bacteria in numbers.

Water Treatment and Oxygen Transfer by Rotating Biological Contactor in Pilot-Scale Recirculating Aquaculture System (Pilot-scale 순환여과식 양식장에서 회전원판 반응기의 순환수 처리 및 산소전달)

  • Suh Kuen Hack;Kim Byong Jin;Lee Jung Hoon;Kim Yong Ha;Lee Seok Hee;Kim Sung Koo;Jo Jea Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.469-475
    • /
    • 2002
  • The rotating biological contactor (RBC) was tested for treatment of aquacultural water in a pilot-scale recirculating aquaculture system. Performance of RBC on the treatment of nitrogen source such as total ammonia nitrogen (TAN), nitrite nitrogen and nitrate nitrogen and chemical oxygen demand (CODcr.) was evaluated. A system was stocked with nile tilapia at an initial rearing densities of $5\%$ and $7\%$ over 30 days. As increasing rearing density from $5\%$ to $7\%$, the TAN removal rates was increased from $39.4 g/m^3{\cdot}day$ to $86.0 g/m^3{\cdot}day$. But TAN removal efficiency was decreased from $24.5\%$ to $16.0\%$. The removal rate of $COD_Cr$ was higher than TAN. The RBC as an aerator was also evaluated for increasing dissolved oxygen concentration. For $5\%$ and $7\%$ of rearing density, the average aeration rate were $280 g/m^3{\cdot}day$ and $255 g/m^3{\cdot}day$, respectively.

Comparison of Removal Characteristics of Organic Matter, Nitrogen and Phosphorus in Suspended-Growth and Hybrid Processes with Hydraulic Retention Time (수리학적 체류시간에 따른 부유성장 미생물을 이용한 공정과 하이브리드 공정의 유기물, 질소 및 인 제거 특성 비교)

  • Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.15-25
    • /
    • 2006
  • This study was initiated to evaluate the effect of HRT(hydraulic retention time) on removal efficiencies of organic matter (C), nitrogen(N) and phosphorus(P) in municipal wastewater for suspenced-growth processes(MLE; Modified Ludzack-Ettinger) and hybrid process(Modified-Dephanox). M-Dephanox process was designed to improve the performance of Dephanox process on denitrification efficiency. As the results, removal efficiencies of C, N and P in M-Dephanox process, which is hybrid process, were higher than those in MLE, which is suspended-growth process. Especially, nitrification inhibition of MLE was observed more severely than M-Dephanox as hydraulic retention time was reduced from 6 hr to 3.5 hr. Nitrification in nitrification reactors on M-Dephanox, at short HRT, was so excellent that ammonia nitrogen removal efficiency in nitrification reactors of M-Dephanox was about 92% at 1.59 hr of HRT of nitrification reactors, however, nitrification in nitrification reactors on M-Dephanox was affected severely by organic matter entering to nitrification reactors from downstream settler. It was observed that reducing of HRT in whole process resulted from reducing of HRT in nitrification reactors on M-Dephanox.

Effect of Struvite Crystallization Kinetics; Seed Material, Seed Particle Size, $G{\cdot}t_d$ Value (Struvite 결정화에 미치는 영향; Seed 물질, Seed 입자크기, $G{\cdot}t_d$ Value의 영향)

  • Kim, Jin-Hyoung;Kim, Keum-Yong;Kim, Dae-Keun;Park, Hyoung-Soon;Lee, Sang-Cheol;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.207-212
    • /
    • 2008
  • This study focused on shorten the period of the struvite crystal birth and development by adding seed materials. For this purpose, three different seed materials were selected: sand, anthracite and struvite. The experiments has been conducted to evaluate the effect of the particle size of the selected seed material on the struvite crystallization, and to study the mixing effect which can be expressed by the value of $G{\cdot}t_d$(the multiple of mean velocity gradient(G) and mixing time($t_d$)). It was observed in this study that the removal efficiency of ammonia nitrogen increased by 9%, 11%, and 20% for sand, anthracite, and struvite added as the seed material, respectivley. This indicated that the struvite crystallization efficiency had a close correlation with the specific surface area of the seed particle. It was found that when struvite was selected as the seed material, the struvite crystallization proceeded at lower $G{\cdot}t_d$ value as compared with other seed materials. This observation implied that the secondary crystal birth would be dominated in this reaction. It was concluded in this study that the particle size was not significant factor on the struvite crystallization, while the $G{\cdot}t_d$ value was a considerably important factor in terms of the theory of the struvite crystal birth.

Development of the Biological Oxidation Filter System for Water Treatment (수처리용 생물산화 여과장치 개발)

  • 염병호;정충혁;문정석;최승일
    • Environmental engineer
    • /
    • s.181
    • /
    • pp.70-75
    • /
    • 2001
  • 본 연구는 '99년 7월에 벤처형 중소기업 기술개발 지원사업으로 신규 계약된 과제로서 상수원수의 전처리 및 하수 2차 침전수의 재처리 공정에 활용될 생물 산화 여과지를 개발하는 것이다. 생물 산화 여과 system은 상수 원수의 전처리, 상수도의 고도정수 처리, 하수 및 폐수처리에 이용될 수 있는 것으로, 특히 물리적 여과기능과 포기 과정을 통한 산화 기능을 포함하는 생물학적 분해 및 자연정화처리환경을 유지하여 수질이 악화된 상수도의 전·후처리나 하.폐수의 3차 처리에 적용하기 위한 것이다. 생물 산화 여과 시스템은 여과지의 하부 장치에 균등한 공기(산소)공급시설을 하여 여과층에 연속적으로 공기를 공급하면서 여과를 함으로서 생물막 여과 및 산화 기능으로 유기물질, 철, 망간 등을 제거하고 공기의 부상력에 의하여 조류, 부유물질, 냄새 등을 동시에 제거하는 System이다. 현재 상수처리 공정으로서의 생물 산화 여과지 개발을 위해 Bench-scale과 semi-pilot plant를 거쳐 Y시 M취수장애 pilot plant를 설치하여 연구를 진행중에 있으며, 또한, G시 G하수처리장에 하수처리 공정에 관한 연구를 위해 pilot plant를 설치하고 하수 3차 처리와 저농도 하·폐수 처리를 중심으로 연구중에 있다. 아래의 연구 결과는 정수처리 공정 연구를 위한 Bench-scale plant실험을 통해 얻은 결과치이며 현재까지 진행된 연구는 주로 정수처리 공정 중심으로 이루어 졌으나 pilot plant에서는 정수 및 하수처리에서의 생물산화여과공정의 연구가 진행중이다. 현재 연구가 진행중이므로 각 인자별 최적운전조건 등은 계속적인 실험과 연구를 통해 찾아지겠으나 현재까지 수행된 연구자료를 기반으로 볼 때 생물산화 여과장치는 탁도, SS, VSS 등의 제거에 탁월한 효능을 보이고 있다. 수처리용 장치로서의 이러한 기본적인 기능 이외에 NPOC, DOC 제거에도 뛰어난 효능을 보이고 있으며 특히 정수처리 공정에서 문제시 되고 있는 동절기 암모니아성 질소제거 또한 큰 가능성을 보여주고 있다. 그 동안 외국기술에 전면 의존해 오던 생물 산화 여과방식의 국내개발은 비용 절감뿐만 아니라 국내 실정에 맞는 기술개발이라는 점에서 향후 그 적용 범위를 넓혀 갈 수 있을 것이다.

  • PDF