DOI QR코드

DOI QR Code

Water Treatment and Oxygen Transfer by Rotating Biological Contactor in Pilot-Scale Recirculating Aquaculture System

Pilot-scale 순환여과식 양식장에서 회전원판 반응기의 순환수 처리 및 산소전달

  • Suh Kuen Hack (Department of Chemical Engineering, Pukyong National University) ;
  • Kim Byong Jin (Busan Bio-industry Support Center) ;
  • Lee Jung Hoon (Department of Chemical Engineering, Pukyong National University) ;
  • Kim Yong Ha (Department of Chemical Engineering, Pukyong National University) ;
  • Lee Seok Hee (Department of Chemical Engineering, Pukyong National University) ;
  • Kim Sung Koo (Department of Biotechnology and Bioengineering, Pukyong National University) ;
  • Jo Jea Yoon (Department of Aquaculture, Pukyong National University)
  • Published : 2002.09.01

Abstract

The rotating biological contactor (RBC) was tested for treatment of aquacultural water in a pilot-scale recirculating aquaculture system. Performance of RBC on the treatment of nitrogen source such as total ammonia nitrogen (TAN), nitrite nitrogen and nitrate nitrogen and chemical oxygen demand (CODcr.) was evaluated. A system was stocked with nile tilapia at an initial rearing densities of $5\%$ and $7\%$ over 30 days. As increasing rearing density from $5\%$ to $7\%$, the TAN removal rates was increased from $39.4 g/m^3{\cdot}day$ to $86.0 g/m^3{\cdot}day$. But TAN removal efficiency was decreased from $24.5\%$ to $16.0\%$. The removal rate of $COD_Cr$ was higher than TAN. The RBC as an aerator was also evaluated for increasing dissolved oxygen concentration. For $5\%$ and $7\%$ of rearing density, the average aeration rate were $280 g/m^3{\cdot}day$ and $255 g/m^3{\cdot}day$, respectively.

사육조 용적 2.5m^3인 pilot-scale 순환여과식 양어장에 나일 틸라피아를 $5\%$$7\%$의 사육밀도로 사육하면서 회전원판 반응기의 암모니아성 질소, 아질산성 질소 및 질산성 질소와 같은 무기질소와 유기물 등과 같은 오염물의 처리 능력을 점검하고자 하였으며 회전원판 반응기의 산소 전달 효율에 대해서도 고찰하였다. 총 암모니아성 질소의 제거속도는 사육밀도 $5\%$의 경우 $30\~80 g/m^3$$\cdot$day의 범위에서 변화하여 $39.4g/m^3{\cdot}day$ 정도의 평균 제거속도를 나타내었다. 사육밀도 $7\%$에서는 15일 이전에는 $30\~80g/m^3{\cdot}day$의 범위로 사육밀도 $5\%$와 유사하였으나 그 이후에는 제거속도가 $80\~170g/m^3{\cdot}day$의 범위로 크게 상승하여 평균 제거속도가 $86.0g/m^3{\cdot}day$ 정도로 나타났다. 회전원판 반응기의 평균 총 암모니아성 질소 제거율은 사육밀도 $5\%$의 경우 $24.5\%$였으며 사육밀도 $7\%$의 경우 $16.0\%$로 나타나 $5\%$의 사육밀도에서 더 높은 제거율을 나타내었다. 아질산성 질소의 평균 제거속도와 평균 제거율은 사육밀도 $5\%$$14.6g/m^3{\cdot}day$$8.1\%$ , 사육밀도 $7\%$$8.1g/m^3{\cdot}day$$10.1\%$로 나타났으며 질산성 질소의 평균 제거속도와 평균 제거끌은 사육밀도 $5\%$$-56.6g/m^3{\cdot}day$$-0.74\%$,사육밀도 $7\%$$-142.6g/m^3{\cdot}day$$-0.63\%$로 나타났다. CODcr,의 제거속도는 사육밀도 $5\%$에서는 평균 1,700g/m^3$\cdot$day, 사육밀도 $7\%$에서는 평균 $4,000g/m^3{\cdot}day$의 값을 나타내어 총 암모니아성 질소의 제거 속도에 비해 매우 높은 값을 나타내었으며 평균 $COD_Cr$, 제거율은 각각 14.5, $29.1\%$이었다. 회전원판 반웅기는 질산화와 유기물 제거에 소요되는 용존산소를 자체적으로 수급할 뿐 아니라 순환수에 용존산소를 더 공급하는 폭기시설의 역할을 동시에 수행할 수 있었으며 사육밀도 $5\%$에서의 평균 폭기 속도는 $280g/m^{3}{\cdot}day$, 사육밀도 $7\%$에서는 $255g/m^3{\cdot}day$였다.

Keywords

References

  1. APHA. 1989. Standard Methods for the Examination of Water and Wastewater. 18th ed. American Public Health Association
  2. Colt, J. and D.A. Armstrong. 1981. Nitrogen toxicity to crustaceans, fish and mollusks, Bio-Engineering Symposium for Fish Culture (FCS Publ. 1), pp. 34-47
  3. Environmental Protection Agency. 1976. Quality Criteria for Water. Washington D.C
  4. Jobling, H.H. 1994. Fish Bioenergetics. Chapman and Hall, London, 120pp
  5. Kim, B.J., S.I. Lim and K.H. Suh. 1998. Ammonia removal by using RBC in recirculating aquaculture system. J. Korean Fish Soc., 31, 622-630 (in Korean)
  6. Lee, HJ. 1995. Comparisons of rotating disc filter and submerged type filter system on the efficiency of nitrogen removal and growth of Nile tilapia (Oreochmmis niloticus), M.S. thesis, National Fisheries University of Busan, Korea, pp. 12-14 (in Korean)
  7. Libey, G.S. 1992. Maxhnum nitri6cation with rotating biological confactors (RBCs). In Proceeding of the workshop on design of high density reciiculating aqtiaculture systems, pp. 40-48. Louisiana State Univ. Baton Rouge, Louisiana. Sept, 25-27
  8. Meade, J.W. 1985. Allowable ammonia for Gsh culture, Progressive Fish-Culturist, 47, 135-148 https://doi.org/10.1577/1548-8640(1985)47<135:AAFFC>2.0.CO;2
  9. Miller, G.E. and G.S. Libey. 1984. Evaluation of a trickling biofilter in a recirculating aquaculture system containing channel cafish. Aquacultural Engineering, 3, 39-57 https://doi.org/10.1016/0144-8609(84)90028-1
  10. Oh, S.Y. 2001. Nitrogen loading rate of Nile tilapia and nitrification rate of rotating biological contactor. Ph. D. thesis, Pukyong National University, Korea (in Korean)
  11. Shanna, B. and R.C. Ahlert. 1977. NitriGcation and nitrogen removal. Water Research, 11, 897-925 https://doi.org/10.1016/0043-1354(77)90078-1
  12. Speece, R.E. 1973. Trout metabolism characteristics and the rational design of nitrification facilities for water reuse in hatcheries, Trans. Amer. Fish. Soc., 102, 323-334 https://doi.org/10.1577/1548-8659(1973)102<323:TMCATR>2.0.CO;2
  13. Suh, K.H., BJ. Kim and I.G. Jeon. 2001. Design and development of integrated recirculating aquaculture system. J. Korean Fish. Soc., 34, 70-76 (in Korean)
  14. Suh, K-H., B.J. Kim and J.Y. Jo. 2002. Start-up operation of recirdilating aquaculture system. J. Korean Fish. Soc., 35, 21-26 (in Korean)
  15. Suh, K-H., B.J. Kim, S.I. Lim, J.K. Cho, Y.H. Kim and C.S. Oh. 1999. Performance of rotating biological contactor under various hydraulic residence time on the removal of total ammonia nitrogen and COD in a simulated water recirculating system. J. Korean Fish Soc., 32, 180-185 (in Korean)
  16. Wheaton, F.W., J.N. Hochheimer, G.E. Kaiser, M.J. Krones, G.S. Lievey and C.C. Easter. 1994. Nitrification Filter Principle, In Aquawlture Water Reuse System: Engineering Design and Management, Timmons, M.B. and T.M. Losordo, ed. Elsevier, Amsterdam, pp. 155
  17. 김인배. 1997. 순환 여과식 양식 산업 개발, 수산과학의 하이테크 (김영섭, 정현도 편저),부산수산대학교 해양과학공동연구소, 113pp

Cited by

  1. 유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거 vol.40, pp.2, 2002, https://doi.org/10.5657/kfas.2007.40.2.073