DOI QR코드

DOI QR Code

Influence of Increased Temperature on the Standard Metabolism in the Marine Bivalves Acclimated to Seasonal Water Temperature -I. Effects of Acclimation Temperature

해산패류의 계절별 표준대사에 미치는 승온 효과 -I. 순화온도의 영향-

  • Kim Kyoung Sun (Department of Marine Biology, Pukyong National University) ;
  • Chin Pyung (Department of Marine Biology, Pukyong National University)
  • 김경선 (부경대학교 해양생물학과) ;
  • 진평 (부경대학교 해양생물학과)
  • Published : 2002.09.01

Abstract

Influence of increased temperature on the standard metabolism in three species of marine bivalves, Crassostrea gigas, Ruditapes philippinarum and Mytilus edulis, acclimated to seasonal water temperatures and collected from the south coast of Korea, were examined in the laboratory. The standard oxygen consumption and filtration rates in the 3 species were measured respectively at the experimental temperature, 4, 7 and 10$^{\circ}C$ or 3, 6 and 9$^{\circ}C$ higher than the mean seasonal water temperature. When the experimental temperatures were higher than the seasonal water temperature, the rates of C. gigas decreased in autumn and spring, and increased In winter, while there was thermal stress in summer. The rates of R. philippinarum increased in spring when the experimental temperatures were 3$^{\circ}C$ and 6$^{\circ}C$ higher than the seasonal water temperature, but the rates increased in autumn and winter when the experimental temperature was even 9$^{\circ}C$ higher than the seasonal water temperature. In summer. metabolic activities of R. philippinarum decreased significantly at temperature higher than acclimation temperature. The rates of M. edulis increased in spring when the experimental temperatures were 3$^{\circ}C$ higher than the seasonal water temperature but the rates were stressed by the increased temperature above 3$^{\circ}C$. In winter, increased temperature did not affect the metabolic activities of M. edulis. These results suggested that the standard metabolism of the three marine bivalves in summer was stressed by the increased temperature, whereas the metabolism was activated in winter.

본 연구는 계절적으로 다른 수온에 순화되어 있는 패류에 대한 승온 효과를 분별하고 특히 시기별로 성장이 다른데 따른 승온 효과를 판별하기 위해 수행하였다. 실험 동물은 남해안 산 참굴, Crassostna gigas, 바지락, Ruditapes philippinarum 및 진주담치, Mytilus edulis의 3종이었으며 각 계절별로 채집하여 순화되어 있는 계절 수온과 순화 온도보다 4, 7 및 $10^{\circ}C$와 3, 6 및$ 9^{\circ}C$로 승온시킨 실험 해수에서 표준산소소비량과 여수량을 측정하였다. 생활사로 보아 가을에 치패기에 있는 참굴은 $14^{\circ}C$ 순화 수온 이상의 수온상승은 오히려 생리적 저해를 주었고 순화 수온이 $7^{\circ}C$인 겨울에는$ 9^{\circ}C$의 승온도 효과적이었다. 그러나 성재에서 여름에 순화 수온 $24^{\circ}C$ 이상의 승온은 저해를 주었다. 봄에 치패기에 있는 바지락은 순화수온보다 $6^{\circ}C$의 승온도 효과가 현저하였으나 그 이상의 수온 상승은 오히려 저해를 주었고 가을과 겨울에는 순화수온보다 온도가 $9^{\circ}C$까지 승온되어도 현저히 효과적이었다. 그러나 여름에는 순화수온 $24^{\circ}C$ 이상의 승온은 현저한 저해영향을 주었다. 진주담치는 봄 치패기에 순화수온보다 $3^{\circ}C$ 승온은 매우 효과적이었으나 그 이상 수온 상승은 저해를 주었다. 여름과 가을의 순화수온보다 높은 수온상승은 영향이 경미하였으며, 겨울에는 승온되어도 별다른 승온 효과를 보이지 않았다. 이상으로 보아 온배수의 승온 효과는 패류의 생활사 중 겨울에는 매우 효과적이었으나 치패기에 있어서는 순화 수온 보다 다소 높은 수온 상승도 오히려 저해 영향을 줄 수 있는 것으로 나타났다.

Keywords

References

  1. Child, A.R. and I. Laing. 1998. Comparative low temperature toleranee of small juvenile European, Ostrea edutis L, and Pacific oysters, Crassostrea gigas Thunberg. Aquacul. Res., 29, 103-113 https://doi.org/10.1111/j.1365-2109.1998.tb01114.x
  2. Clegg, J.S., S.A. Jackson, N.V. Hoa and P. Sorgeloos.'2000. TKermalresistance, developmental rate and heat shock proteins in Artemia franciscana, from San Francisco Bay -and southern Vietnam. J. Exp. Mar. Biol. Ecol., 252, 85-96 https://doi.org/10.1016/S0022-0981(00)00239-2
  3. Cole, H.A. and B.T. Hepper. 1954. The use of neutral red solution for the comparative study of filtration rate of Lamelli branchs. J. Cons Int. Explror. Mer., 20, 197-203 https://doi.org/10.1093/icesjms/20.2.197
  4. Craciun, C. 1980. Effect of high temperatures on the ultrastructure of leydig cells in Mytilus gallopmvincialis. Mar. BioL, 60, 73-79 https://doi.org/10.1007/BF00389150
  5. Fielder, D.S., G.J. Purser and S.C. Battaglene. 2000. E-Hect of rapid changes in temperature and salinity on availability of the rotifers Brachmntis rotundiformis and Brachionus plicatilis. Aquaculture, 189, 85-99 https://doi.org/10.1016/S0044-8486(00)00369-0
  6. Gonzalez, J.G. and P. Yevlch. 1976. Responses of an estuarine population of the blue mussel Mytilus edulis to heated water from a steam generating plant Mar. Biol., 34, 177-189 https://doi.org/10.1016/j.biologicals.2005.09.002
  7. His, E., R. Robert and A. Dinet 1989. Combined effects of temperature and salinity on fed and starved larvae of the Mediterranean mussel Mytilus galloprovindalis and the Japanese oyster Crassosfrea gieas. Mar. Biol., 100, 455-463 https://doi.org/10.1007/BF00394822
  8. Incze, L.S., R.A Luta and L. Watling. 1980. Relationships between effects of environmental temperature and seston on growth and mortality of Mytilus edulis in a temperate northern estuary. Mar. BioL, 57, 147-156 https://doi.org/10.1007/BF00390733
  9. Khalil, A.M, 1994. Influence of starvation, body size and temperature on ammonia excretion in the marine bivalve Tapes decussatus (L). Aquacul. Fish. Manage., 25, 839-847
  10. Kinne, 0. 1963. The effects of temperature and salinity on marine and brackish water animals. I. Temperature. Oceanogr. Mar. Biol. A. Rev., 1, 301-340
  11. Kinne, 0. 1970. Temperature. In Marine Ecotoey, Vol. 1, Envimnmental factors Part 1, 0. Kinne, ed. Wiley-Interscience, pp.407-486
  12. Kumlu, M., O.T. Eroldogan and M. Aktas. 2000. Effects of temperature and salinity on larval growth, survival and development of Penaeus semisulcatus. Aquaculture, 188, 167-173 https://doi.org/10.1016/S0044-8486(00)00330-6
  13. Mann, R. 1979. The effect of temperature on growth, Physiology, and gametogenesis in the manila clam Tapes philippinarum. J. Exp. Mar. Biol. Ecol., 38, 121-133 https://doi.org/10.1016/0022-0981(79)90016-9
  14. Menasveta, P. 1981. Lethal temperature of marine fishes of the Gulf of Thailand. J. Fish. Biol., 18, 603-607 https://doi.org/10.1111/j.1095-8649.1981.tb03800.x
  15. Minier, C., V. Borghi, M.N. Moore and C. Porte. 2000. Seasonal variation of MXR and stress proteins in the common mussel, Mytilus galloproviacialis. Aquat. ToxicoL, 50, 167-176 https://doi.org/10.1016/S0166-445X(99)00104-6
  16. Procarione, L.S. and T.L. King. 1993. Upper and lower temperature tolerance limits for juvenile red drums from Texas and south Carolina. J. Aquat. Anim. Health, 5, 208-212 https://doi.org/10.1577/1548-8667(1993)005<0208:UALTTL>2.3.CO;2
  17. Thomas, C.W., B.J. Crear and P.R. Hart. 2000. The effect of temperature on survival, growth, feeding and metabolic activity of the southern rock lobster, Jasus edwardsii. Aquaculture, 185, 73-84 https://doi.org/10.1016/S0044-8486(99)00341-5
  18. Tsuchiya, M. 1983. Mass mortality in a population of the mussel Mytilus edulis L. caused by high temperature on rocky shores. J. Exp. Mar. Biol. Ecol., 66, 101-111 https://doi.org/10.1016/0022-0981(83)90032-1
  19. Walne, P.R. 1972. The influence of current speed, body size and water temperature on the Gltration rate of five species of bivalves. J. Mar. Biol. Ass. U.K., 52, 345-374 https://doi.org/10.1017/S0025315400018737
  20. Widdows, J. 1978. Combined effects of body size, food concentration and season on the physiology of Mytilus edulis. J. Mar. Biol. Ass. U.K., 58, 109-124 https://doi.org/10.1017/S0025315400024449
  21. Wilson, J.G. and B. Elkaim. 1991. Tolerances to high temperature of infaunal bivalves and the effect of geographical distribution, position on the shore and season. J. Mar. Biol. Ass. U.K., 71, 169-177 https://doi.org/10.1017/S0025315400037486

Cited by

  1. 이상 고수온에 반응하는 이매패류 참굴(Crassostrea gigas)의 패각운동을 활용한 생물모니터링시스템 연구 vol.23, pp.1, 2017, https://doi.org/10.7837/kosomes.2017.23.1.091