• Title/Summary/Keyword: 알칼리 활성 콘크리트

Search Result 78, Processing Time 0.024 seconds

Compressive Strength and Optimal Mixing Ratio of Alkali Activated Cement Concrete Containing Fly Ash (플라이 애쉬를 활용한 알칼리 활성시멘트 콘크리트의 압축강도와 최적혼합비)

  • Han, Sang-Ho;Park, Sang-Sook;Kang, Hwa-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.152-158
    • /
    • 2007
  • This is a fundamental research to utilize alkali activated cement(AAC) in concrete. The compressive strength of AAC concrete were measured for the various mixing ratios of activator/fly ash, and the mixing ratios of water glass, NaOH, and water among the activators. The mixing ratio of fine and coarse aggregates was maintained constantly. The relationships between the compressive strength and mixing ratios were analyzed to find the optimal mixing ratio of AAC concrete. As the results, the optimal mixing ratio of activator/fly ash in AAC concrete was 0.7, and that of water glass, NaOH, water among the activator was 4.0:1.0:2.5 for the maximum compressive strength.

The Effect on the Alkali-Activator Mixture Ratio of fly Ash Mortar (알칼리 활성화제 혼합비가 플라이애시 모르타르에 미치는 영향)

  • Kang, Hyun-Jin;Kang, Su-Tae;Ko, Kyung-Taek;Ryu, Gum-Sung;Park, Jung-Jun;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.395-396
    • /
    • 2009
  • The purpose of this study is to observe the effect of mixture ratio of alkali-activator on workability and compressive strength of alkali-activated mortar that using 100% fly ash.

  • PDF

Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates (경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성)

  • Yang, Keun-Hyeok;Oh, Seung-Jin;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.405-412
    • /
    • 2008
  • Six alkali-activated (AA) concrete mixes were tested to explore the significance and limitations of developing an environmental friendly concrete. Ground granulated blast-furnace slag and powder typed sodium silicate were selected as source material and an alkaline activator, respectively. The main parameter investigated was the replacement level of lightweight fine aggregate to the natural sand. Workability and mechanical properties of lightweight AA concrete were measured: the variation of slump with time, the rate of compressive strength development, the splitting tensile strength, the moduli of rupture and elasticity, the stress-strain relationship, the bond resistance and shrinkage strain. Test results showed that the compressive strength of lightweight AA concrete sharply decreased when the replacement level of lightweight fine aggregate exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of concrete tested. The measured properties of lightweight AA concrete were also compared, wherever possible, with the results obtained from the design equations specified in ACI 318-05 or EC 2, depending on the relevance, and the results predicted from the empirical equations proposed by Slate et al. for lightweight ordinary Portland cement concrete. The stress-strain curves of different concrete were compared with predictions obtained from the mathematical model proposed by Tasnimi. The measured mechanical properties of lightweight AA concrete generally showed little agreement with the predictions obtained from these equations.

The Mechanics Characteristics of Alkali-Activated Mortar by Brain of Blast Furnace Slag (고로슬래그 분말도에 따른 알칼리 활성 모르타르의 역학적 특성)

  • Kang, Hyun-Jin;Ko, Kyung-Taek;Ryu, Gum-Sung;Kang, Su-Tae;An, Gi-Hong;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.393-394
    • /
    • 2009
  • Recently, various researchers have studied alkali-activated concrete that do cementless as the binder. This study analyzed the effect on alkali-activated mortar by fineness of blast slag as the binder with no use of cement, by observing workability and compressive strength.

  • PDF

Synthesis and Mechanical Properties of Alkali-Activated Slag Concretes (무시멘트 알칼리 활성 고로슬래그 콘크리트의 배합에 따른 재료 역학적 특성)

  • Song, Jin-Kyu;Lee, Kang-Seok;Han, Sun-Ae;Kim, Young-In
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1005-1008
    • /
    • 2008
  • The purpose of this study is to estimate basic mechanical properties of alkali-activated concretes based on GGBS(Ground Granulated Blast Furnace Slag). In this study, various mix ratios of alkali activated concretes based on sodium silicate and GGBS were set to evaluate concrete's compressive strengths and strains on the basis of results of existing alkali-activated cements and preliminary concrete tests, which were already performed by authors [Ref. 1]. Compressive strengths of concretes of ages 1, 3, 7, 28, 56 and 91 days were tested and investigated, respectively, and at early ages (< 7days) alkali-activated slag concrete (AASC) showed a high strength development, compared to that of Ordinary Portland Cement (OPC). A compressive strengths of AASC at age-3days range between 18 and 24 MPa, while those of OPC range 12 and 15 MPa. The stress-strain curve after maximum stress, on the other hand, is approximately reached at a compressive strain between 0.002 and 0.0025, which mechanical property is very similar to that of OPC.

  • PDF

Autogenous Shrinkage Properties of High Strength Alkali Activated Slag Mortar (고강도 알칼리 활성 슬래그 모르타르의 자기수축 특성)

  • Oh, Sang-Hyuk;Hong, Sung-Hyun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.60-65
    • /
    • 2014
  • Recently, lots of researches on alkali-activated slag (AAS) concrete have been carried out to resolve the environmental issues such as recycling by-products and global warming. AAS concrete would have high strength and high level of durability. On the other hand, it is known that large amount of shrinkage occurred in AAS concrete due to rapid alkaline reaction in the early age, and however, the related studies about autogenous shrinkage of high strength AAS mortar are relatively rare. In this study, fresh mortar properties such as flow and setting time, compressive strength and autogenous shrinkage of AAS mortar with W/B=0.40 to 0.50, were measured. AAS mortar was activated with sodium silicate (Ms=1.0) with 5, 6 and 7 % of $Na_2O$. Test results revealed that AAS morar shows larger autogenous shrinkage than OPC mortar and the lower W/B of AAS mortar, the greater autogenous shrinkage. Therefore, the application of appropriate curing and the use of shrinkage reduction admixture would be needed to reduce autogenous shrinkage of AAS mortar.

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag (알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성)

  • Cho, Won-Jung;Park, Kwang-Pil;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2022
  • The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

Flow and Compressive Strength of Slag Mortars Activated by $MgNO_3$ ($MgNO_3$에 의해 활성된 슬래그 모르터의 유동성과 압축강도)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Song, Jin-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.299-300
    • /
    • 2010
  • Flow and compressive strength of slag mortars activated by $MgNO_3$ were measured to examine the significance and limitation for the use of Mg-ion as an alkali-activator. The compressive strength of mortars tested was significantly dependent on the addition amount of $MgNO_3$, showing that 30~60% higher strength was developed in water-cured mortars than in air-cured mortars.

  • PDF

Flowability and Compressive Strength of Cementless Alkali-Activated Mortar Using Blast Furnace Slag (고로슬래그를 사용한 무시멘트 알칼리 활성 모르타르의 유동성과 압축강도)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin;Jeon, Yong-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. In this study, we investigated the influence of alkali activator and superplasticizer on the flowability and compressive strength of the alkali-activated mortar in oder to develop cementless alkali-activated concrete using blast furnace slag. In view of the results, we found out that the type and mixture ratio of alkali activator, the type and adding order of superplasticizer results to be significant factors. When cementless alkali-activated mortar using blast furnace slag manufactured with 1:1 the mass ratio of 9M NaOH and sodium silicate, and added superplasticizer before alkali activator in the mixer, we can be secured workability with 180 mm of flow during 1 hours and compressive strength of about 50 MPa under $20^{\circ}C$ curing condition at age of 28days.

  • PDF

Effect of the Combined Using of Fly Ash and Blast Furnace Slag as Cementitious Materials on Properties of Alkali-Activated Mortar (결합재(結合材)로 플라이애시와 고로(高爐)슬래그의 혼합사용(混合使用)이 알칼리 활성(活性) 모르타르의 특성(特性)에 미치는 영향(影響))

  • Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2010
  • Attempts to increase the utilization of a by-products such as fly ash and blast furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/slag, type of alkaline activator and curing condition on the workability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/slag and the type of alkaline activator always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.