• Title/Summary/Keyword: 알리아싱

Search Result 10, Processing Time 0.026 seconds

Wavelet Based Matching Pursuit Method for Interpolation of Seismic Trace with Spatial Aliasing (공간적인 알리아싱을 포함한 탄성파 트레이스의 내삽을 위한 요소파 기반의 Matching Pursuit 기법)

  • Choi, Jihun;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • Due to mechanical failure or geographical accessibility, the seismic data can be partially missed. In addition, it can be coarsely sampled such as crossline of the marine streamer data. This seismic data that irregular sampled and spatial aliased may cause problems during seismic data processing. Accurate and efficient interpolation method can solve this problem. Futhermore, interpolation can save the acquisition cost and time by reducing the number of shots and receivers. Among various interpolation methods, the Matching Pursuit method can be applied to any sampling type which is regular or irregular. However, in case of using sinusoidal basis function, this method has a limitation in spatial aliasing. Therefore, in this study, we have developed wavelet based Matching Pursuit method that uses wavelet instead of sinusoidal function for the improvement of dealiasing performance. In addition, we have improved interpolation speed by using inner product instead of L-2 norm.

Seismic Trace Interpolation using Spectral Estimation (스펙트럼 추정을 이용한 탄성파 트레이스 내삽)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.134-137
    • /
    • 2003
  • A scheme for missing-trace interpolation of linear events is proposed. For a two-dimensional seismic dataset which contains linear events, a post-interpolation spectrum can be estimated from a portion of the original aliased spectrum. The restoration of missing trace data is accomplished by minimizing the energy after applying a filter which has an amplitude spectrum that is inverse to the estimated spectrum.

A Study on Matching Pursuit Interpolation with Moveout Correction (시간차 보정을 적용한 Matching Pursuit 내삽 기법 연구)

  • Lee, Jaekang;Byun, Joongmoo;Seol, Soon Jee;Kim, Young
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.103-111
    • /
    • 2018
  • The recent research aim of seismic trace interpolation is to effectively interpolate the data with spatial aliasing. Among various interpolation methods, the Matching Pursuit interpolation, that finds the proper combination of basis functions which can best recover traces, has been developed. However, this method cannot interpolate aliased data. Thus, the multi-component Matching Pursuit interpolation and moveout correction method have been proposed for interpolation of spatially aliased data. It is difficult to apply the multi-component Matching Pursuit interpolation to interpolating the OBC (Ocean Bottom Cable) data which is the multi-component data obtained at the ocean bottom because the isolation of P wave component is required in advance. Thus, in this study, we dealt with an effective single-component matching Pursuit interpolation method in OBC data where P-wave and S-wave are mixed and spatial aliasing is present. To do this, we proposed the Ricker wavelet based single-component Matching Pursuit interpolation workflow with moveoutcorrection and systematically investigated its effectiveness. In this workflow, the spatial aliasing problem is solved by applying constant value moveout correction to the data before the interpolation is performed. After finishing the interpolation, the inverse moveout correction is applied to the interpolated data using the same constant velocity. Through the application of our workflow to the synthetic OBC seismic data, we verified the effectiveness of the proposed workflow. In addition, we showed that the interpolation of field OBC data with severe spatial aliasing was successfully performed using our workflow.

Applying Spitz Trace Interpolation Algorithm for Seismic Data (탄성파 자료를 이용한 Spitz 보간 알고리즘의 적용)

  • Yang Jung Ah;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.171-179
    • /
    • 2003
  • In land and marine seismic survey, we generally set receivers with equal interval suppose that sampling interval Is too narrow. But the cost of seismic data acquisition and that of data processing are much higher, therefore we should design proper receiver interval. Spatial aliasing can be occurred on seismic data when sampling interval is too coarse. If we Process spatial aliasing data, we can not obtain a good imaging result. Trace interpolation is used to improve the quality of multichannel seismic data processing. In this study, we applied the Spitz algorithm which is widely used in seismic data processing. This algorithm works well regardless of dip information of the complex underground structure. Using prediction filter and original traces with linear event we interpolated in f-x domain. We confirm our algorithm by examining for some synthetic data and marine data. After interpolation, we could find that receiver intervals get more narrow and the number of receiver is increased. We also could see that continuity of traces is more linear than before Applying this interpolation algorithm on seismic data with spatial aliasing, we may obtain a better migration imaging.

GPU based Maximum Intensity Projection using Clipping Plane Re-rendering Method (절단면 재렌더링 기법을 이용한 GPU 기반 MIP 볼륨 렌더링)

  • Hong, In-Sil;Kye, Hee-Won;Shin, Yeong-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.316-324
    • /
    • 2007
  • Maximum Intensity Projection (MIP) identifies patients' anatomical structures from MR or CT data sets. Recently, it becomes possible to generate MIP images with interactive speed by exploiting Graphics Processing Unit (GPU) even in large volume data sets. Generally, volume boundary plane is obliquely crossed with view-aligned texture plane in hardware-texture based volume rendering. Since the ray sampling distance is not increased at volume boundary in volume rendering, the aliasing problem occurs due to data loss. In this paper, we propose an efficient method to overcome this problem by Re-rendering volume boundary planes. Our method improves image quality to make dense distances between samples near volume boundary which is a high frequency area. Since it is only 6 clipping planes are additionally needed for Re-rendering, high quality rendering can be performed without sacrificing computational efficiency. Furthermore, our method couldbe applied to Minimum Intensity Projection (MinIP) volume rendering.

  • PDF

An Algorithm of MIP-Map Level Selection for Ray-Traced Texture Mapping (광선 추적법 텍스쳐 매핑을 위한 MIP-Map 수준 선택 알고리즘 연구)

  • Park, Woo-Chan;Kim, Dong-Seok
    • Journal of Korea Game Society
    • /
    • v.10 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • This paper proposes an effective method to select MIP-Map level of texture images for ray-traced texture mapping. This MIP-Map level selection method requires only the total length of intersected ray. By supporting MIP-Map for texture mapping, we can reduce the texture aliasing effects, while our approach decreases rendering performance very slightly.

An Analysis of DEM and Gravity Effect for Precision Geoid Determination in Korea (우리나라 정밀지오이드 구축을 위한 지형자료 및 중력자료 영향 분석)

  • Lee, Bo-Mi;Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Yong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.519-527
    • /
    • 2008
  • The basic elements in precise geoid determination are the gravity and topographic data with reliable quality and distribution. In this study, the effect of the gravity and topographic data on the precision of the geoid are analyzed through simulations in which the quality and distribution of the data are artificially controlled. It was found that the distribution of the topographic data has more effect on the precision of geoid than the quality of the it. This leads to the conclusion that the SRTM (Shuttle Radar Topography Mission) DTM (Digital Terrain Model) with resolution of 90m is qualified as a topographic data in geoid determination. In the experiments with gravity data, on the other hand, the aliasing effect caused by the low data density caused large errors in geoid. It was found that the more gravity data especially in north-eastern mountainous area is needed for precise geoid determination in Korea.

Improvement of Migration Image for Ocean-bottom Seismic Data using Wavefield Separation and Mirror Imaging (파동장 분리와 미러 이미징을 이용한 해저면 탄성파 탐사 자료의 참반사 보정 영상 개선)

  • Lee, Ganghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.112-124
    • /
    • 2018
  • Ocean-bottom seismic survey is a seismic acquisition technique which measures data by installing 4-component receiver on the sea floor. It can produce more improved data in quality than any other acquisition techniques. In the ocean-bottom seismic survey, however, the number of receivers is limited due to high cost. Since only a small number of receivers are used for acquisition, ocean-bottom seismic data may suffer from discontinuities of events over traces, which can result in spatial aliasing. In this paper, we implemented Kirchhoff migration using mirror-imaging algorithm to improve the quality of ocean-bottom seismic image. In order to implement the mirror imaging algorithm, the seismograms should be separated into up-going and down-going wavefields and the down-going wavefield should be used for migration. In this paper, we use the P-Z summation method to separate the wavefield. Numerical examples show that the migration results using mirror imaging algorithm have wider illumination than the conventional migration, especially in the shallow layers.

Spectral Characteristics of Sea Surface Height in the East Sea from Topex/Poseidon Altimeter Data (Topex/Poseidon에서 관측된 동해 해수면의 주기특성 연구)

  • 황종선;민경덕;이준우;원중선;김정우
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.375-383
    • /
    • 2001
  • We extracted sea surface heights(SSH) from the TopexJPoseidon(T/P) radar altimeter data to compare with fhe SSH estimated from in-situ lide gauges(T/G) at Ulleungdo, Pohang, and SockcholMucko sites. Selection criteria such as wet/dry troposphere, ionosphere, and ocean tide were used to estimate accurate SSH. For time series analysis, the one-hour interval tide gauge SSHs were resampled al lO-day interval of the satellite SSHs. The ocean tide model applied in the altimeter data processing showed periodic aliasings of 175.5 day, 87.8 day, 62J day, 58.5 day, 49.5 day and 46.0 day, and, hence, the ZOO-day filtering was applied to reduce these spectral noises. Wavenumber correlation analysis was also applied to extract common components between the two SSHs, resulting in enhancing the correlation coefficient(CC) dramatically. The original CCs between the satenite and tide gauge SSHs are 0.46. 0.26, and 0.]5, respectively. Ulleungdo shows the largest cc bec;luase the site is far from the coast resulting in the minimun error in the satellite observations. The CCs were then increased to 0.59, 030, and 0.30, respectively, after 200.day filtering, and to 0.69, 0.63. and 0.59 after removing inversely correlative components using wavenumber correlation analysis. The CCs were greatly increased by 87, 227, and 460% when the wavenumber correlation analysis was followed by 2oo-day filtering, resulting in the final CCs of 0.86, 0.85, 0.84, respectively. It was found that the best SSHs were estimated when the two methods were applied to the original data. The low-pass filtered TIP SSHs were found to be well correlated with the TIG SSHs from tide gauges, and the best correlation results were found when we applied both low-pass filtering and spectral correlation analysis to the original SSHs.

  • PDF