• Title/Summary/Keyword: 알루미늄 독성현상

Search Result 2, Processing Time 0.017 seconds

Thermodynamic Consideration on the Occurrence of $Al_{13}$-Tridecamer in the Natural Conditions ($Al_{13}$-Tridecamer의 자연계 생성조건에 대한 열역학적 고찰)

  • 이규호;송유구;문희수;문지원;김인준
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.103-112
    • /
    • 2002
  • Despite the ecological importance of potentially phytotoxic $Al_{13}$-tridecamer and its formation in the simulated condition, it was not recognized in the natural soil environment. Here we performed thermodynamic calculations to examine the stability condition of $Al_{13}$-tridecamer based on the solubility of AI in the Bo horizon of Andisols, Jeju Island, dominantly composed of AI-containing solid phases such as $Al(OH)_{3}$, proto-imogolite and/or imogolite. We have found that $Al(OH)_{3}$, proto-imogolite and/or imogolite may control Al solubility in the moderate acid condition. It means that AI total activity of the soil solution equilibrated with these solid phases ranges from $10^{-6}$ ~ $10^{-8}$M in the pH 5 to 7. Calculations based on the thermodynamic data strongly indicate that the formation of $Al_{13}$-tridecamer closely related to the total activity of AI in the system. For example, for the formation of $Al_{13}$-tridecamer of $10^{-5}$M, Al total activity of $3{\times}10^{-3}$M are needed at pH 4, and $2{\times}10^{-5}$M in the pH 5 to 7. Therefore, this research and the thermodynamic consideration suggest strongly that $Al_{13}$-tridecamer should be negligible in natural soils, especially Andisols and Spodosols, These mainly contain $Al(OH)_{3}$, proto-imogolite and/or imogolite, which could prevent the formation of $Al_{13}$-tridecamer by controlling the AI total activity low. It means that the toxicity of $Al_{13}$-tridecamer with the increase of soil acidification may be considered to be definitely low.

Comparison of Soil Physicochemical Properties According to the Sensitivity of Forest Soil to Acidification in the Republic of Korea (우리나라 산림토양의 산성화 민감도평가와 그에 따른 토양 이화학적 특성 비교분석)

  • Lee, Ah Lim;Koo, Namin
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • The sensitivity of forest soil to acidification in the Republic of Korea (ROK) was evaluated based on pHH2O, cation exchange capacity (CEC), and base saturation (BS). Sensitivity to acidification was categorized into three grades: adequate level (AL, pH ≧ 4.2, CEC ≧ 15cmol/kg, BS ≧ 15%), caution level (CL, at least one indicator is below AL), and severe Level (SL, all three indicators are below AL). Soil samples were collected from the 65 stationary monitoring plots (40 × 40 ㎢), distributed throughout ROK. Only 19% of soil samples were classified as AL, while 66% and 15% were CL and SL, respectively. The median of pHH2O, CEC, BS, and Ca/Al indicator in AL soils was pH 4.64, 20.7cmol/kg, 29%, and 6.3, respectively. Moreover, BCex (K+, Mg2+, Ca2+) and available phosphorus (AP) concentration compared with a threshold value and molar ratio of BCex and AP to total nitrogen (TN) was high. This indicates that AL soils have a good nutrient condition. The molar Ca/Al ratio, an indicator for toxicity of exchangeable aluminum (Alex), was more than 1, indicating no negative impact of Alex on plant growth. On the contrary, the median of pHH2O, CEC, and BS in SL soils was pH 4.02, 13.2cmol/kg, and 10%, respectively. The Ca/Al index was less than 0.6, which indicates that negative impacts of Alex on plants were high. Furthermore, both the concentration of BCex in SL soils and the BCex/TN ratio were the lowest among the three acidity degrees. This shows that SLsoils can be degraded by soil acidification compared with less acidic soils.