Thermodynamic Consideration on the Occurrence of $Al_{13}$-Tridecamer in the Natural Conditions

$Al_{13}$-Tridecamer의 자연계 생성조건에 대한 열역학적 고찰

  • 이규호 (연세대학교 지구시스템과학과) ;
  • 송유구 (연세대학교 지구시스템과학과) ;
  • 문희수 (연세대학교 지구시스템과학과) ;
  • 문지원 (연세대학교 지구시스템과학과) ;
  • 김인준 (한국지질자원연구원)
  • Published : 2002.02.01

Abstract

Despite the ecological importance of potentially phytotoxic $Al_{13}$-tridecamer and its formation in the simulated condition, it was not recognized in the natural soil environment. Here we performed thermodynamic calculations to examine the stability condition of $Al_{13}$-tridecamer based on the solubility of AI in the Bo horizon of Andisols, Jeju Island, dominantly composed of AI-containing solid phases such as $Al(OH)_{3}$, proto-imogolite and/or imogolite. We have found that $Al(OH)_{3}$, proto-imogolite and/or imogolite may control Al solubility in the moderate acid condition. It means that AI total activity of the soil solution equilibrated with these solid phases ranges from $10^{-6}$ ~ $10^{-8}$M in the pH 5 to 7. Calculations based on the thermodynamic data strongly indicate that the formation of $Al_{13}$-tridecamer closely related to the total activity of AI in the system. For example, for the formation of $Al_{13}$-tridecamer of $10^{-5}$M, Al total activity of $3{\times}10^{-3}$M are needed at pH 4, and $2{\times}10^{-5}$M in the pH 5 to 7. Therefore, this research and the thermodynamic consideration suggest strongly that $Al_{13}$-tridecamer should be negligible in natural soils, especially Andisols and Spodosols, These mainly contain $Al(OH)_{3}$, proto-imogolite and/or imogolite, which could prevent the formation of $Al_{13}$-tridecamer by controlling the AI total activity low. It means that the toxicity of $Al_{13}$-tridecamer with the increase of soil acidification may be considered to be definitely low.

토양 산성화에 따른 알루미늄 독성현상과 관련하여 자연환경에서의 존재 가능성이 제기되어온 $Al_{13}$-tridecamer 의 열역학적 생성조건에 대한 고찰을 Al-함유 광물상을 다량 함유하고 있는 제주도 나디졸 토양 Bo층 시료의 실내 평형실험 결과를 기초로 실시하였다. 대강토양은 평형상태일 경우 $Al(OH)_{3}$, 이모골라이트 혹은 프로토-이모골라이트가 반응액의 알루미늄 총활동도를 조절하는 주 고상인 것으로 나타났다. 이 경우 반응액의 알루미늄 총활동도는 pH 5~7환경에서 $10^{-6}$~$10^{-8}$~M 로 매우 낮게 나타난다. 기존의 열역학 자료들을 이용한 $Al_{13}$-tridecamer생성조건 고찰 결과, 알루미늄의 총활동도가 $Al_{13}$-tridecamer의 생성 여부를 결정하는 가창 주요 요인으로, 예를 들어, 그 활동도가 $10^{-5}$/M이 되기 위하여는 pH=5~7 구간에서는 약 $2{\times}10^{-5}$M, pH=4에서는 약 $3{\times}10^{-3}$M 이상치 알루미늄이 자연수에 용해되어 있야 한다. 따라서 $Al(OH)^{3}$, 이모골라이트 혹은 프로토-이모골라이트 등에 의해 알루미늄 총활동도가 제안되는 토양계에서는 평형조건에서 $Al^{13}$/-tridecamer 생성을 위한 알루미늄 총활동도 조건을 충족시키지 못한다 이러한 결과는 Al-함유고상들에 의해 알루미늄 총활동도가 조절되는 평형조건에 근접한 자연계 토양에서는 $Al_{13}$-tridecamer치 생성확인 가능성이 배우 낮음을 제시하며, 단지 pH 3 내외의 산성화가 심화된 극히 일부 토양, 또는 산성환경에서 형성된 높은 일루미늄 총활동토플 갖는 용액이 부분적으로 중화되는 비평형 환경 등, 극히 제한적인 환경에서만이 다량의 $Al_{13}$-tridecamer생성이 가능할 것이다. 이러한 열역학적 고찰 결과는 깁사이트 및 이모 라이트가 알루미늄 거동의 주요 영향인자인 안디졸 및 스포도졸 토양에서의$Al_{13}$-tridecamer의 인지 가능성은 매우 희박함을 지시해 주며, 따라서 이 같은 토양에서의 $Al_{13}$-tridecamer에 의한 독성현상은 그 가능성은 극히 낮을 것으로 생각된다.

Keywords

References

  1. Geochim. Cosmochim. Acta v.59 The role of organic matter in controlling aluminum solubility in acidic mineral soil horizons. Berggren, D.;Mulder, J.; https://doi.org/10.1016/0016-7037(95)94443-J
  2. Soil. Sci. Soc. Am. J. v.51 Conditions for Al(13) polymer formation in partially neutralized aluminum solutions Bertschl, P.M. https://doi.org/10.2136/sssaj1987.03615995005100030046x
  3. J. Colloid and Interface Science v.117 Mechanism of formation of aluminum trihydroxide from keggin $Al_13$ polymers Bottero, J.Y.;Axelos, M.;Tchoubar, D.;Cases, J.M.;Fripiat, J.J.;Fiessinger, F. https://doi.org/10.1016/0021-9797(87)90166-4
  4. Ann. Sci. For. v.51 Alumimium toxicity in declining forests:a general overview with seasonal assenssment in a silver firforest in the Vosges mountains(France) Boudot, J.P.;Becquer, T.;Merlet, D.;Rouiller, J. https://doi.org/10.1051/forest:19940103
  5. Water-Resources Investigations Report 97-4222 U.S. Charlton, S.R.;Macklin, C.L.;Parkhurst, D.L.
  6. J. Soil Serience v.50 The solubility characteristics of organic Al precipitates in allophanic Bs horizons could mimic those of Al hydroxides, and indicate the solubility of associated allophanes European Farmer, V.C https://doi.org/10.1046/j.1365-2389.1999.00271.x
  7. Journal of Soil Science v.33 Chemical and colloidal stability of sols in the Al₂O₃-Fe₂O₃-SiO₂-H₂O system:their role in podzolization Farmer, V.C.;Fraser, A.R.
  8. Geochim. Cosmochim. Acta v.58 An assessment of complex formation between aluminum and silicic acid in acidic solutions Farmer, V.C;Lumsdon, D.G. https://doi.org/10.1016/0016-7037(94)90088-4
  9. J. Colloid and Interface Science v.149 On the chemistry of the Keggin Al(13) polymer, I. Acid-base properties Furrer, G.; Ludwig, C.;Schindler, P.W. https://doi.org/10.1016/0021-9797(92)90391-X
  10. Geochim. Cosmochim. Acta. v.56 The formation of polynuclear Al(13) under simulated natural conditions Furrer, G.;Trusch, B.;Muller, C. https://doi.org/10.1016/0016-7037(92)90174-H
  11. European J. Soil Science v.52 Aluminum solubility mechani in moderately acid Bs horisons of podzolized soils. Gustafsson, J.J.;Berggre, D.;Simmon, M.;Zysset, .;Mulder, J. https://doi.org/10.1046/j.1365-2389.2001.00400.x
  12. Soil. Sci. Soc. Am. J. v.59 Detrimental sulfate effects on formation of Al-13 tridecameric polycation in synthetic soil solutions Kerven, G.L;Larsen, P.L.;Blamey, F.P.C https://doi.org/10.2136/sssaj1995.03615995005900030019x
  13. Clay and Clay Minerals v.47 Role of tartaric acid in the inhibition of the formation of $Al_13$ tridecamer using sulfate precipitation Krishnamurti, G.S.R.;Wang, M.K.;Huang, P.M. https://doi.org/10.1346/CCMN.1999.0470512
  14. Can. J. Fish Aquat. Sci. v.43 Aluminum speciation in some synthetic systems: comparison of the fast-oxine, pH 5.0 extraction and dialysis methods Lalande, H.;Hendershot W.H. https://doi.org/10.1139/f86-027
  15. Research Issues in Alumimium Toxicity. Aluminium in water LaZerte, B.D.;Loon, G.;van Anderson, B.;Yokel, R.A.(eds.);Goulb, M.S.(eds.)
  16. European J. Soil Science v.46 Solubility characteristics of proto-imogolite sols: how silicie acid can de-toxify aluminum solutions Lumsdon, D.G.;Famer, V.C. https://doi.org/10.1111/j.1365-2389.1995.tb01825.x
  17. Geochim Cosmochim Acta v.43 Gibbsite solubility and thermodynamic properties of hydroxy-aluminum ions in the aqueous solution at 25℃ May H.D.;Helmke P.A.;Jackson M.L. https://doi.org/10.1016/0016-7037(79)90224-2
  18. The Environmental Chemistry of Aluminum Aqueous equlibrium data for mononuclear aluminum species Nordstrom, D.K.;May, H.M.;G.;Sposito. G.(Ed.)
  19. Geochim Cosmochim. Acta v.56 Aluminum speciation and equilibria in aqueous solution:Ⅱ.The solubility of gibbsite in acidic sodium chloride solution from 30 to 70℃ Palmer, D.A;Wesolowski, D.J. https://doi.org/10.1016/0016-7037(92)90048-N
  20. Environ. Sci. Technol. v.26 Formation of the Al(13) tridecameric polycation under diverse synthesis conditions Parker, D.R.;Bertsch, P.M. https://doi.org/10.1021/es00029a007
  21. Soil. Sci. Soc. Am. J. v.53 On the phytotoxicity of polynuclear hydroxy-aluminum complexes Parker, D.R;Kinraide, T.B.;Zelazny, L.W. https://doi.org/10.2136/sssaj1989.03615995005300030027x
  22. Water-Resources Investigations Report 95-4227 Parkhurst, D.L.
  23. Geochim Cosmochim Acta v.58 The temperature dependence of stability constants for the formation of polynuclear cationic complexes Plyasunov, A.v.;Grenthe, I. https://doi.org/10.1016/0016-7037(94)90150-3
  24. Soil Sci. Soc. Am. J. v.57 Differential cultivar response to polynuclear hydroxo-aluminium complexes Shann J. R.;Bertsch P.M. https://doi.org/10.2136/sssaj1993.03615995005700010022x
  25. European J. Soil Science v.51 Interaction of aluminum and fulvic acid in moderately acid solutions:stoichiometry of the H+/Al³+ exchange Simonsson M. https://doi.org/10.1046/j.1365-2389.2000.00349.x
  26. Abstract of the 53rd Conference of the Geological Society of Korea Mineralogical Characterization of Andisols in Cheju Island Song, Y.;Paterson, E.;Moon, H.-S.;Lee, G.H.
  27. The environmental chemistry of aluminum Sposito, G.(eds.)
  28. Soil Sci. Soc. Am. J. v.59 Solubility of hydroxy-aluminum interlayer and imogolite in a Spodosol Su, C.;Harsh, J.B.;Boyle, J.S. https://doi.org/10.2136/sssaj1995.03615995005900020015x
  29. Anal. Chem. v.55 Determination of reactive silicate in seawater by flow injection analysis Thomsen, J.;Johnson, K.S.;Petty, R.L. https://doi.org/10.1021/ac00264a039
  30. Soil Sci. Plant Nutr. v.33 High toxicity of hydroxy-aluminum polymer ions to plant roots Wagatsuma T.;Kaneko M. https://doi.org/10.1080/00380768.1987.10557552