• Title/Summary/Keyword: 알루미늄 도핑된 ZnO

Search Result 14, Processing Time 0.021 seconds

Synthesis of Al-Doped ZnO by Microwave Assisted Hydrothermal Method and its Optical Property (마이크로파 수열합성법을 이용한 알루미늄이 도핑된 산화아연 합성 및 그 광학적 특성)

  • Hyun, Mi-Ho;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1555-1562
    • /
    • 2015
  • Metal oxide semiconductors have been applied in several areas, such as solar cells, sensor, optical elements and displays, due to the high surface area, unique electrical and optical characteristics. Zinc oxide among the metal oxide has excellent physicochemical properties. Zinc oxide is a n-type semiconductor with a wide direct transition band gap of 3.37 eV at room temperature and large exciton binding energy of 60 meV. Cation-doped zinc oxide studies were conducted to complement the electrical and optical characteristics. In this paper, Al-doped ZnO was synthesized by hydrothermal synthesis using microwaves. ZnO was synthesized by adjusting the precursor ratio and using different dopants. The optimal ZnO synthesis conditions for crystal shape and optical properties were determined. The optical properties of aluminum doped zinc oxide were then examined by SEM, XRD, PL, UV-vis absorbance spectrum, and EDS.

Fabrication of Nanodot Arrays Via Pulsed Laser Deposition Technique Using (PS-b-PMMA) Diblock Copolymer and Anodic Aluminum Oxide Templates (고분자 공중합체와 알루미늄 양극 산화막 템플레이트를 이용한 나노점 배열 형성)

  • Park Sung-Chan;Bae Chang-Hyun;Park Seung-Min;Ha Joeng-Sook
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.427-433
    • /
    • 2006
  • We have fabricated nanodot arrays by using phase separated (PS- b- PMMA) diblock copolymer film and anodic aluminum oxide (AAO) membrane as templates with hexagonal arrays of cylindrical microdomains perpendicular to the substrate. Pulsed laser deposition technique was used to deposit various kinds of materials including Ag, Ni, ZnO, Si:Er, and Co/Pt onto Si substrates. The size and separation of nanodots correspond to those of the templates used, The density of nanodots was estimated to be $6{\times}10^{11}/cm^2$ and $1{\times}10^{10}/cm^2$ when the diblock copolymer and AAO were used, respectively. In particular, the optical properties of ZnO and Si: Er nanodot arrays were investigated and the strong photoluminescence at 380 nm and $1.54{\mu}m$ was observed from ZnO and Si:Er nanodot arrays, respectively.

ZnO 나노와이어 씨드층 플라즈마 처리에 따른 광특성 및 유기 태양전지 특성평가

  • Sin, Hyeon-Jin;Park, Seong-Hwak;Jo, Jin-U;Kim, Seong-Hyeon;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.425-425
    • /
    • 2012
  • 입사되는 태양광의 광 경로와 투과도는 태양전지 효율에 밀접한 관련이 있기 때문에 이를 개선하기 위한 많은 연구들이 진행 중에 있다. 본 연구에서는 광 경로를 길게 하고, 투과도를 개선하기 위해 알루미늄 도핑된 ZnO (AZO) 씨드층을 ICP플라즈마 처리를 하였고, 플라즈마 처리된 기판에 ZnO 나노와이어를 성장하였다. 플라즈마 처리된 AZO 기판과 ZnO 나노와이어가 성장된 기판의 광 투과도를 분석하기 위해 Haze meter를 이용하였으며, FE-SEM을 이용하여 각 기판의 형상을 분석하였다. AZO 씨드층을 플라즈마 처리했을 경우 ITO 기판보다 400-500 nm 영역에서 투과도가 향상되었고, ZnO 나노와이어가 성장한 기판은 400~600 nm 영역에서 투과도가 개선되는 것을 확인 할 수 있었다. ZnO 나노와이어가 성장된 기판을 이용하여 P3HT:PCBM 블랜딩된 유기 태양전지를 제작하여 전기적 특성 및 효율을 평가 하였다.

  • PDF

Effects of Oxygen Flow Ratio on the Structural and Optical Properties of Al-doped ZnO Thin Films (산소 유량비 변화에 따른 Al 도핑된 ZnO 박막의 구조 및 광학적 특성)

  • Son, Young-Gook;Hwang, Dong-Hyun;Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.267-272
    • /
    • 2007
  • Al-doped ZnO (AZO) thin films were grown on glass substrates by radio-frequency magnetron sputtering. The effects of oxygen flow ratio, which was used for a sputtering gas, on the AZO thin films were investigated by using the X-ray diffraction (XRD), atomic force microscopy (AFM), and Hall effects measurement. The AZO thin film, deposited with oxygen flow ratio of 0% at the growth temperature of $400^{\circ}C$, showed a strongly c-axis preferred orientation and the lowest resistivity of $6.9{\times}10^{-4}{\Omega}cm$. The ZnO (002) diffraction peak indicated a tendency to decrease substantially with increasing the oxygen flow ratio. Furthermore, as the oxygen flow ratio was decreased, the carrier concentration and the hall mobility were increased, but the electrical resistivity was decreased.

Deposition and Optimization of Al-doped ZnO Thin Films Fabricated by In-line Sputtering System (인라인 스퍼터를 이용한 알루미늄 도핑된 산화아연 박막의 증착 및 특성 최적화 연구)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1236-1241
    • /
    • 2017
  • We deposited Al-doped ZnO (ZnO:Al) thin films on glass substrates ($200mm{\times}200mm$) by using in-line magnetron sputtering system. Effects of various deposition parameters such as working pressure, deposition power and substrate temperature on optoelectronic characteristics including surface-texture etching profiles were carefully investigated in this study. We found that relatively low working pressure and high deposition power offered to obtain enhanced conductivity and optical transmittance. Haze properties showed similar trend with the transmittance. Furthermore, surface-texture etching study exhibited good morphologies when the films were deposited at $200-300^{\circ}C$. On the basis of these optimizations, we could find the deposition region that produces highly transparent and conductive properties including efficient light scattering capability.

Efficient Organic Light-emitting Diodes with Aluminum-doped Zinc Oxide Anodes (알루미늄 도핑된 산화아연 양극을 적용한 고효율 유기발광다이오드)

  • Lee, Ho-Nyeon;Lee, Young-Gu;Jung, Jong-Guk;Lee, Seung-Eui;Oh, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.711-715
    • /
    • 2007
  • Properties of organic light-emitting diodes (OLEDs) with aluminum-doped zinc oxide (ZnO:Al) anodes showed different behaviors from OLEDs with indium tin oxide (ITO) anodes according to driving conditions. OLEDs with ITO anodes gave higher current density and luminance in lower voltage region and better EL and power efficiency under lower current density conditions, However, OLEDs with ZnO:Al anodes gave higher current density and luminance in higher voltage region over about 8V and better EL and power efficiency under higher current density over $200mA/cm^2$. These seemed to be due to the differences in conduction properties of semiconducting ZnO:Al and metallic ITO. OLEDs with ZnO:Al anodes showed nearly saturated efficiency under high current driving conditions compared with those of OLEDs with ITO anodes. This meant better charge balance in OLEDs with ZnO:Al anodes. These properties of OLEDs with ZnO:Al anodes are useful in making bright display devices with efficiency.

A study on TCO properties for thin-film silicon solar cells (박막형 실리콘 태양전지 적용을 위한 투명전도막 특성 연구)

  • Lee, Seungjik;Kim, Deokyeol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.46.2-46.2
    • /
    • 2010
  • For use of superstrate thin-film solar cells, surface texture of the transparent conductive oxide (TCO) has been used to enhance short-circuit currents by increasing light trapping into the cell. ZnO:Al films were deposited by using DC magnetron sputtering on glass substrates with ceramic (ZnO:$Al_2O_3$) target. The as-deposited TCO before texturing exhibited high transparencies (T > 85% for visible light including all reflection losses) and excellent electrical properties ($r=3-6{\times}10^{-4}{\Omega}.cm$). The optical and electrical properties of the TCO are influenced by the texturing conditions such as not only etchant dilutions but also etching time. We obtained the haze value of 14-16 resulting in increase in light trapping and short-circuit currents also.

  • PDF

Properties of Nitrogen and Aluminum Codoped ZnO Thin Films Grown by Radio-frequency Magnetron Sputtering (라디오파 마그네트론 스퍼터링으로 성장한 질소와 알루미늄 도핑된 ZnO 박막의 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.129-133
    • /
    • 2008
  • Nitrogen and aluminum codoped ZnO(NAZO) thin films were grown on glass substrates with changing the nitrogen flow ratio by radio-frequency magnetron sputtering. The structural, optical, and electrical properties of the NAZO films were investigated. The surface morphologies and the structural properties of the thin films were analyzed by using the X-ray diffraction and scanning electron microscopy. The NAZO thin film, deposited at nitrogen flow ratio of 0%, showed a strongly c-axis preferred orientation and the lowest resistivity of $3.2{\times}10^{-3}{\Omega}cm$. The intensity of ZnO(002) diffraction peak was decreased gradually with increasing the nitrogen flow ratio. The optical properties of the films were measured by UV-VIS spectrophotometer and the optical transmittances for all the samples were found to be an average 90% in the visible range. Based on the transmittance value, the optical bandgap energy for the NAZO thin film deposited at nitrogen flow ratio of 0% was determined to be 3.46 eV. As for the electrical properties, the carrier concentration and the hall mobility were decreased, but the electrical resistivity was increased as the nitrogen flow ratio was increased.

Effect of Plasma Enhancement on the Al-doped ZnO Thin Film Synthesis by MOCVD (유기금속화학기상증착법에 의한 ZnO:Al 필름 합성에서 플라즈마 인가 효과)

  • Seomoon, Kyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • Al-doped ZnO (AZO) thin films were synthesized on Si(100) wafers via plasma enhanced metal organic chemical vapor deposition (PE-MOCVD) method using diethyl zinc (DEZ) and N-methylpyrrolidine alane (MPA) as precursors. Effects of Al/Zn mixing ratio, plasma power on the surface morphology, crystal structure, and electrical property were investigated with SEM, XRD and 4-point probe measurement respectively. Growth rate of the film decreased slightly with increasing the Al/Zn mixing ratio, however electrical property was enhanced and resistivity of the film decreased greatly about 2 orders from $9.5{\times}10^{-1}$ to $8.0{\times}10^{-3}{\Omega}cm$ when the Al/Zn mixing ratio varied from 0 to 9 mol%. XRD analysis showed that the grain size increased with increasing the Al/Zn mixing ratio. Growth rate and electrical property were enhanced in a mild plasma condition. Resistivity of AZO film decreased down to $7.0{\times}10^{-4}{\Omega}cm$ at an indirect plasma of 100 W condition which was enough value to use for the transparent conducting oxide (TCO) material.

Sol-Gel법을 적용한 투명전도 산화막 제조 공정

  • Park, Yeong-Ung;Lee, In-Hak;Jeong, Seong-Hak;Im, Sil-Muk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.108.2-108.2
    • /
    • 2012
  • 디스플레이는 유리 기판이나 폴리머 기판에 진공장비를 통한 투명전극(TCO)를 증착시키고, 그 위에 발광체와 유전체를 쌓는 방식으로 공정을 진행한다. 특히 투명전극(TCO)의 경우 진공장비를 이용하여 증착을 진행하는데, 이러한 생산 공정은 고가의 생산 장비 및 재료와 공정의 복잡화에 따른 생산단가 상승등으로 인한 경쟁력 저하 문제가 야기되고 있다. 본 연구에서는 투명전극(TCO)의 주재료인 인듐 주석 산화물(ITO)를 배제하고, 아연 산화물(ZnO)에 알루미늄을 도핑한 투명전극을 습식방식으로 형성하는 기술에 관한 것이다. Sol-gel법을 이용한 용액 제조와 ZnO에 Al을 도핑하여, 후 열처리하여 유리 기판에 $1{\mu}m$두께를 갖는 투명전극 기판을 제작하였다. 각 공정에 있어서 조성변화가 투명전극 층에 미치는 영향에 대해서 조사 하였다. 이와 같은 제조 공정에는 Sol-gel 용액 제조, 박막형성에 이은 후처리로 이루어지는 단순공정이 적용되어, 기존 투명전도 산화막 공정에 대비하여 단순 공정으로 이뤄지며, 진공 설비를 배제함으로써 기존공정 대비 경쟁력을 갖게 된다.

  • PDF