항로추종성능은 자율운항선박(MASS)의 중요한 자율제어기능 중 하나이다. 이는 선박의 안전성을 보장하기 위해 중요하며, 자율운항선박의 설계 단계에서 사전 평가가 필수적이다. 본 연구는 자율운항선박의 항로추종성능 평가를 위한 전산유체역학(CFD) 모델과 LOS 알고리즘 연계 방안을 제안한다. 먼저, 자율운항선박의 정수 중 거리 이탈 편차를 이용한 항로 추종 성능 평가 모델 개발에 관하여 기술했다. 먼저, 항로 추종을 수행하는 선박 주변의 난류 흐름은 비압축성 뉴턴 유체의 가정하에 비정상 RANS(Reynolds Averaged Navier-Stokes) 법을 이용하여 수치적으로 계산되었다. 중첩격자계법을 CFD 모델에 적용함으로써 거리 이탈 편차를 이용하는 LOS(Line-of-Sight) 가이던스 알고리즘에 의한 타의 회전 및 이에 따른 선체의 6 자유도 움직임을 CFD 환경에서 구현하였다. 개발된 자유 항주 선박 CFD 모델을 이용하여 항로 추종 시뮬레이션 평가 결과, 설정된 항로에서 선박의 정수 중 항로 추종 제어는 파도, 조류, 및 바람과 같은 외부 교란의 부재로 LOS 알고리즘에 의한 우현/좌현 측 변침뿐만 아니라 직진 경로의 추종도 성공적으로 수행됨을 확인하였다. 선체, 프로펠러, 타의 복잡한 상호작용을 정도 높게 해석할 수 있는 자유 항주 선박 CFD 모델과 LOS 알고리즘의 결합은 자율운항선박의 항로 추종 성능 평가를 정량적으로 평가하는 데 기여할 것으로 기대된다.
본 논문에서는 Forward Kinematics의 개념을 이용하여 각도변화에 따른 좌표계산 방법을 설명하고, Workspace 생성을 위한 반복적 방정식 (Recursive Equation)을 동차좌표계를 이용하여 수식으로 표현한다. 그리고 이 반복적 방정식(Recursive Equation)과 인체모델 관절의 한계 각도를 접목시켜 인체모델의 Workspace생성을 위한 알고리즘을 제시하고, 제시한 알고리즘을 이용하여 인체모델의 Workspace 생성결과를 그래픽으로 표현하였으며 알고리즘의 적절성을 보였다.
본 논문에서는 효과적인 객체 추적을 위해 가우시언 믹스처 기반의 그림자 제거 알고리즘을 제안하고, GPGPU(General Purpose GPU) 아키텍처인 NVIDIA 사의 CUDA(Compute Unified Device Architecture)를 이용하여 기존의 객체 추적 알고리즘의 컴퓨팅 시간을 개선하는 모델을 제안한다. 이 시스템은 GPU를 이용한 가우시언 믹스처 모델 기반의 객체 추적 알고리즘으로 전경과 배경 분리 시 CPU와 GPU의 프로세스 시간을 적절히 분배하여 소모되는 연산시간을 줄이고, 고 해상도의 이미지에서의 객체 분리 및 추적의 시스템 처리량을 최대화 한다. 객체 추출 후 효과적인 추적을 위해 예측 모델인 칼만 필터를 사용한다.
본 논문은 반향 제거 평균 예측 LMS 알고리즘을 이용하여 반향 잡음에 강인한 연속 음성 인식 모델인 CHMM 모델을 구성하는 방법을 제안하였다. 변화하는 반향 잡음에 적응하고 연속 음성 인식 성능 향상을 위한 반향 잡음 제거 평균 예측 LMS 알고리즘을 이용하여 CHMM 모델을 구성하였다. 제안한 알고리즘에 의해 구성된 CHMM 모델에 대하여 연속 인식 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 음성의 SNR은 평균 1.93dB이 향상되었고 연속 음성의 인식률은 2.1% 향상되었다.
본 논문에서는 복잡하고 비선형적인 시스템에 대하여 구체적이고 체계적인 방법에 의한 퍼지 모델을 설계하기 위해 유전자알고리즘을 이용하여 전반부 및 후반부의 구조와 파라미터 동정한다. 정보 입자 기반 퍼지 모델의 구조를 동정하기 위하여 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽함수의 수, 그리고 후반부 형태를 결정하고, 파라미터를 동정하기 위하여 전반부 멤버쉽 파라미터를 동조하여 최적의 퍼지 모델을 설계한다. 또한 구조 동정 및 파라미터 동정에 있어서 개선된 연속적 동조 방법으로 접근하여 정보 입자 기반 퍼지 모델의 최적 동정을 도모한다. 마지막으로 제안된 퍼지 모델은 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.
심층학습은 많은 양의 데이터셋을 학습에 활용하여 객체 분류, 검출, 분할 등의 영상 분석에 탁월한 성능을 나타내고 있다. 본 논문에서는 데이터셋의 종류가 다양한 얼굴 표정인식 데이터셋들을 활용하여 학습 데이터셋의 특성이 심층학습 성능에 영향을 줄 수 있음을 확인하고, 각 학습 데이터셋에 적합한 심층학습 모델의 구성 요소를 설정하는 방법을 제안한다. 제안하는 방법은 심층학습 모델의 성능에 영향을 주는 구성 요소인 활성함수, 그리고 최적화 알고리즘을 유전 알고리즘을 이용하여 선정한다. CK+, MMI, KDEF 데이터셋에 대해서 널리 활용되고 있는 심층학습 모델의 각 구성 요소별 다양한 알고리즘을 적용하여 성능을 비교 분석하고, 유전 알고리즘을 적용하여 최적의 구성 요소를 선정할 수 있음을 시뮬레이션을 통하여 확인한다.
어휘 인식 시스템은 학습 모델을 구성하여 인식하므로 구성되어진 모델에서 벗어난 어휘의 입력과 유사한 어휘의 입력은 인식하지 못하거나 유사한 어휘로 인식되어 인식률 저하가 나타난다. 이런 경우 인식 모델을 확장할 수 있도록 재구성하거나 인식 모델 구성 시 확장성을 반영하므로 해결할 수 있다. 본 논문에서는 모델 구성 시 확장성을 반영할 수 있는 모수 추정을 위한 베이시안 기법을 사용하여 바타차랴 알고리즘 음성 인식 학습 모델 구성 방법을 융합하여 제안하였다. 음소가 갖는 특징을 기반으로 학습 데이터의 음소에 모수 추정을 위한 베이시안 기법을 이용하였고 유사한 학습 모델은 바타챠랴 알고리즘을 이용하여 정확한 학습 모델로 인식하도록 하였다. 바타챠랴 알고리즘 인식 모델을 구성하여 인식 성능을 평가하였다. 본 논문에서 제안한 시스템을 적용한 결과 어휘 인식률에서 97.5%의 인식률과 1.2초의 학습 시간을 나타내었다.
바디 센서 시스템 환경이란 사용자가 서기, 걷기, 뛰기 등의 행위를 통해 주기적으로 상황이 변하는 동적 환경이다. 이와 같은 시스템에서는 크기가 작고 저전력을 요구하는 센서가 탑재되기 때문에 효율적인 알고리즘을 적용하는 것은 매우 중요한 일이다. 모델체커는 최근 소프트웨어 모델 (Model)을 검증하는 도구로써 주어진 모델과 속성값을 통해 해당 모델의 검증 (Verification) 결과가 참인지 거짓인지 판별해 준다. 본 논문에서는 효율적인 바디 센서 시스템 구축을 위해 서기, 걷기, 뛰기라는 환경에서 개별적으로 동작되는 알고리즘을 모델링 하고 LTL(Linear Temporal Logic) 로 속성을 명세하여 NuSMV 모델 체커를 통해 해당 모델의 Safety와 Liveness를 검증한다.
기상수치예보모델의 강수물리과정은 강수 발생과 연관된 입자의 낙하속도, 부착 및 자동전환, 입자크기분포 등의 과정을 다룬다. 하지만 수치예보모델의 미세물리과정과 모수에는 상당한 불확실성이 내포되어 있다. 수치예보모델의 불확실성을 줄이기 위하여 일반적으로 모수 추정을 사용한다. 이 연구에서는 모수 추정을 위한 최적화 알고리즘으로 마이크로 유전알고리즘과 하모니탐색 알고리즘을 사용하고 우리나라에서 발생한 강수사례에 대해 통합모델의 강수물리과정에서 사용하는 모수를 최적화하였다. 두 알고리즘의 서로 다른 특성으로 인해 최적화 과정 중의 차이가 보였다. 마이크로 유전알고리즘은 440회 수행 후 약 1.033의 적합도로 수렴하였고 하모니탐색 알고리즘은 60번 수행 후 약 1.031의 적합도로 수렴하였다. 이를 통해 하모니탐색 알고리즘이 마이크로 유전알고리즘보다 더 빨리 최적의 모수를 탐색하는 것을 알 수 있었다. 따라서 계산비용이 방대한 기상수치예보모델의 최적화 문제에서 빠른 시간 내에 최적의 모수를 탐색해야 한다면 하모니 탐색 알고리즘이 더 적합하다는 것을 확인하였다.
미사일의 비생실험 데이타로부터 동력학적 계수를 추정하기 위하여 Extended Kalman Filter(EKF) 알고리즘을 사용하고 시뮬레이숀으로부터 얻어진 비행 데이타를 써서 알고리즘을 해석하였다. 이 알고리즘에서는 여러 가지 미사일에 적용할 수 있도록 자유도가 여섯인 (6-DOF) 운동식을 써서 미사일 모델을 세웠으며 연구결과 EKF가 비생실험후 얻어진 데이타로부터 다수의 미사일 동력학적 계수값을 추정할 수 있음을 알았다. 계수추정 알고리즘과 병행하여 미사일의 구조를 추정하는 알고리즘을 조사하였으며 이 알고리즘은 여러 후보 모델중 비행실험 데이타에 가장 근접한 값을 주는 모델을 선정한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.