• Title/Summary/Keyword: 안정계수

Search Result 1,694, Processing Time 0.025 seconds

Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon (플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석)

  • Ko, Arim;Chang, Kyoungsik;Park, Changhwan;Sheen, Dongjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.32-38
    • /
    • 2019
  • The flying wing configuration with high sweep angles and rounded leading edge represent a complex flow of structures by the leading edge vortex. For control of the tailless flying wing configuration with unstable directional stability, flaperon is used. In this study, we conducted numerical simulations for a non-slender flying wing configuration with a rounded leading edge and analyzed the effect of the sideslip angle and flaperon. Through aerodynamic coefficient analysis, it was found that the effect of AoS on lift and drag coefficient was minimal and the side force and moment coefficient were markedly influenced by AoS. As the sideslip angle increased, the pitch break, which is related to the pitching moment coefficient, was delayed. Through stability analysis, the directional and lateral static stability of the flying wing configuration were increased by flaperon. Also, the structure and behavior of the leading edge vortex were analyzed by observing the contour of the pressure coefficient and the skin friction line.

A Smooth Elasto-Plastic Cap Model(II): Integration Algorithm and Tangent Operator (연속 탄소성 캡 모델(II): 응력적분 및 접선계수)

  • 서영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • 보편적인 탄소성 캡 모델은 전통적인 등방 이론에 기초를 두고 있다. 이러한 모델의 응력적분 및 접선 계수의 유도는 여러 가지 논문들에 나타나 있지만 축차 및 체적 거동을 동시에 다루는 내제적인 해석법을 통한 지반해석은 아직까지는 많은 도전이 요구되고 있다. 앞선 동반 논문에서는 비연속적으로 연결된 항복면 사이의 접선 계수는 특이점이 됨을 나타내었고 이에 대하여 새로운 캡 모델의 구성식이 제시되었다. 본 논문에서는 제시된 캡 모델의 비 조건적이고 안정된 내재적 응력적분 및 일관된 탄소성 접선계수를 유도하였다. 또한 간단한 예제를 통하여 모델의 수행능력을 보여주었고 사면안정계산이 수행되었다.

  • PDF

A Study of DC Motor Speed Control By tms-320C32 Based (TMS-320C32기반에 의한 DC 모터 속도제어의 연구)

  • Jeong, S.H.;Kwon, S.M.;Cheon, J.M.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2218-2220
    • /
    • 2003
  • 현대 산업현장에서 80%이상 사용되는 PID(proportional integral derivative) 제어기는 제어성, 적응성, 제어이득 조정 등의 특정이 있어나 제어 대상에 대한 PID 제어 계수를 경험적 방법인 수동으로 동조해야하는 문제점이 있다. 이를 개선하기 위해 본 논문에서 PID제어기의 최적 자동동조를 위한 릴레이 동조 방법을 제안한다. 기존의 한계감도법과 과도응답 법으로 초기계수를 결정하는 방법보다 유연성과 적용성이 높고, 이를 마이크로프로세서(DSP : TMS-320C32)에 적용하여 소프트웨어적으로 릴레이의 기능이 이루어지도록 설계했다. 이는 Ziegler-Nichols 계수조정법이 갖는 적용대상의 제약성을 극복한 방법이며, 릴레이에 의해 출력을 강제 진동시키고 출력의 진폭과 주기를 이용하여 PID 계수를 조정하고, 또 상대안정성의 척도인 위상여유를 고려하므로 시스템의 상대안정성과 견실성을 향상시킬 수 있음을 확인하였다.

  • PDF

Stability Analysis of Thin Plates on Inhomogeneous Pasternak foundation (비균질 Pasternak지반에 의해 지지된 박판의 안정 해석)

  • 이용수;김광서
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.401-411
    • /
    • 2001
  • This paper deals with the vibration analysis of the rectangular plates which are subjected to uniform in-plane stresses and supported on In-homogeneous Pasternak foundation. Two parametric foundation which Winkler foundation parameter and shear foundation parameter considered, is called by the Pasternak foundation. The values of Winkler foundation parameter of central and border zone of plate are chosen as k₁and k₂respectively, and the value of shear foundation is chosen as constant about all zone of plate. After composing global flexural stiffeness matrix, geometrical stiffeness matrix, mass matrix, and the stiffeness matrix of the Pasternak foundation, eigenvalue problems which are composed of these matrices are solved. The result shows that the shear foundation parameter must not be ignore when considering the stiffeness of foundation.

  • PDF

Numerical Analysis for Integrity Evaluation of River Bank (하천제방의 건전도 평가를 위한 수치해석적 연구)

  • Jung, Hyuksang;Byun, Yoseph;Chun, Byungsik;Choi, Bonghyuck;Kim, Jinman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.19-26
    • /
    • 2010
  • An influence factors for soundness evaluation of river levee include consisting embankment in case piping, permeability coefficient of ground, height of embankment, the width of crest, material characteristics of embankment and foundation ground, shape of embankment slope, an influence for penetration of rainfall or river water in case slope stability. In this study, it was operated a feasibility investigation of existing design result, stability evaluation for permeability coefficient use and permeability coefficient change of foundation ground to investigate an influence in line with permeability coefficient change for result of river levee penetration analysis. The evaluation results of influence factors, the permeability coefficient was used in design and it was evaluated influence in safety factor of piping. After the evaluation of influence factors, the permeability coefficient used in the design appears with the fact that differs in a design report about same soil.

Variation of the Overall Heat Transfer Coefficient of Plastic Greenhouse Covering Material (플라스틱온실 피복재의 관류열전달계수 변화)

  • Lee, Hyun-Woo;Diop, Souleymane;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • The objective of the present study is to provide the basic data necessary for estimating the overall heat transfer coefficient of commercial plastic greenhouse. The heat flow through covering of greenhouses was measured and the variation of overall heat transfer coefficient was analyzed. Because the inside-outside temperature difference of greenhouse to indicate the stabilized overall heat transfer coefficient was different depending on the number of covering layers, the actual overall heat transfer coefficient should be decided in range of inside-outside temperature difference to make the coefficient constant for each covering method. The variation trend of the overall heat transfer coefficient according to the inside-outside temperature difference corresponded with the existing research results, but the specific values of temperature difference to present the stabilized overall heat transfer coefficient were different each other. The increase rates of overall heat transfer coefficient with wind speed were quite dissimilar among several research results and the quantity of heat loss through covering according to the wind speed in the double layers covered or curtained greenhouse was less than that in the single layer covered greenhouse. Because there was large variations among the values of overall heat transfer coefficient for the polyethylene film greenhouses, it was required to establish the standardized environmental condition for experiment measuring heat flow through covering in commercial greenhouse.

Sensitivity Analyses of Influencing Factors on Slope Stability (사면안정성 영향인자의 민감도 분석)

  • Park, Byung-Soo;Jun, Sang-Hyun;Cho, Kwang-Jun;Yoo, Nam-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.91-100
    • /
    • 2010
  • In this paper a sensitivity analysis about effects of influencing factors on the stability of soil cut and embankment slopes in field was performed. Slope stability analysis of slopes in field was carried out with dry, rainy and seismic conditions. As results of analyzing the sensitivity of factors for the dry and rainy conditions, effect of cohesion, internal friction angle and unit weight of soil on the stability of cut slope is more critical in the dry condition than in the rainy condition. However, their effects on the stability of embankment slope for both conditions are similar to each other. The horizontal seismic coefficient does also affect the stability within the similar range of values irrespective of dry or rainy conditions. Cohesion and internal friction angle are more dominant factors influencing the slope stability irrespective of dry or rainy conditions than unit weight of soil and the horizontal seismic coefficient.

Seismic P-$\Delta$ Effects of Slender RC Columns in Earthquake Analysis (지진하중을 받는 철근콘크리트 장주의 P-$\Delta$ 효과)

  • Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.375-387
    • /
    • 2006
  • Different from the previous studies which investigated seismic P-$\Delta$ effect in slender columns though comparison of response spectra according to stability coefficients obtained from the analyses based on the assumed moment-curvature relationship, the axial force and P-$\Delta$ effect in RC columns are investigated on the basis of the layered section method which can effectively consider the changes of stiffness and yield strength due to the application of axial force in RC members. Practical ranges of slenderness and stability coefficient are assumed, and sixty sets of horizontal/vertical earthquake inputs are used in the analysis. From the parametric study, it is noted that the maximum deformation of the slender RC column is hardly affected by P-$\Delta$ effect or vortical earthquake but dominantly affected by the applied axial force. Therefore, it can be concluded that no additional consideration for the P-$\Delta$ effect and vortical earthquake is required in the seismic design of a slender RC column if the axial force effect is taken into account in the analysis and design procedures.

Stability Formula for Rakuna-IV Armoring Rubble-Mound Breakwater (사석방파제 위에 피복한 Rakuna-IV의 안정공식)

  • Suh, Kyung-Duck;Lee, Tae Hoon;Matsushita, Hiroshi;Nam, Hong Ki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.181-190
    • /
    • 2013
  • In this study, a total of 51 cases of hydraulic model tests has been conducted for various wave conditions and slope angles of breakwater to develop a stability formula for Rakuna-IV armoring a rubble-mound breakwater. The stability number of the formula is expressed as a function of relative damage, number of waves, structural slope, and surf similarity parameter. The stability formula is derived separately for plunging and surging waves, the greater of which is used. The transitional surf similarity parameter from plunging waves to surging waves is also presented. Lastly, to explain the stability of Rakuna-IV to the engineers who are familiar with the stability coefficient in the Hudson formula, the required weight of Rakuna-IV is calculated for varying significant wave height for typical plunging and surging wave conditions, which is then compared with those of the Hudson formula using several different stability coefficients.

Stability Analysis of Geocell Reinforced Slope During Rainfall (강우 시 지오셀 보강 사면의 안정성 평가에 관한 연구)

  • Shin, Eun-Chul;Kim, Jang-Ill
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2017
  • In this study, the increment effect of safety factor according to increasing of horizontal permeability coefficient is analyzed when geocell is installed on the slope for protection. To evaluate the horizontal permeability and reinforcement effect, the laboratory tests such horizontal permeability test were conducted. According to the laboratory test results, as the porosity rate of geocell increases, the coefficient of horizontal permeability is also increased. And also, regardless of the different types of filled materials, the coefficient of horizontal permeability is improved in a geocell reinforced ground compare with the non-reinforced ground. Laboratory test results and the rainfall intensity were applied to the numerical modeling of slope for seepage analysis and stability analysis of slope by using Soilworks, numerical analysis program. As a result of the slope stability analysis, it is confirmed that the installed geocell on the slope facilitates the drainage of water on the surface of slope. Hence, the ground water elevation is suppressed. Therefore, the safety factor of the slope is increased by the increasing of the internal friction angle, apparent cohesion, and coefficient of horizontal permeability by reinforcing the slope with geocell.