• Title/Summary/Keyword: 안전 환경

Search Result 12,218, Processing Time 0.04 seconds

Investigation of Plant Injury under Ambient Air Pollutants (대기오염물질에 의한 농작물 피해원인 조사)

  • Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Jung, Goo-Bok;Kim, Won-Il;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In order to find out the cause of plant injury, the symptom of plant injury, and contents of element concerned in the plant were analysed. Also, a case study was conducted to find out the factor of plant injury at a agriculture and industry complex in Gyeongsang province in 2004. The distribution of isomeric curve was made with meteorological data, toxic gas concentration exhausted from pollution source. The general symptom of plant injury by ammonia gas was dry and dead of leaves with white color. At low concentration of ammonia gas, plant leaf showed spots of reddish brown. The characteristic of plant injury symptom by hydrogen fluoride gas was that the symptom was appeared at the edge of leaf. The isomeric curve of sulfur dioxide at the region, where the plant was damaged, showed that the area was affected by exhausted gas from the pollution source. Especially, this area was affected more deeply at summer than any other season.

Development of an augmented reality based underground facility management system using BIM information (BIM을 활용한 증강현실 기반 지하시설물 관리 시스템 개발에 관한 연구)

  • Shin, Jaeseop;An, Songkang;Song, Jeongwoog
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • In Korea, safety accidents are continuously occurring due to the aging of underground facilities and lack of systematic management. Moreover, although the underground space is continuously being developed, the current status information is not clearly recorded and managed, so there is a limit to the systematic management of underground facilities. Therefore, this study developed an augmented reality-based system that can effectively maintain and manage underground facilities that are difficult to manage because they are located underground. In order to develop an augmented reality-based underground facility management system, three essential requirements, 'precise localization', 'use of BIM information', and 'ensure usability' were derived and reflected in the system. By utilizing Broadcast-RTK, the positional precision was secured to cm level, and the configuration and attribute information of the BIM was converted into the IFC format to construct a system that could be implemented in augmented reality. It developed an application that can optimize usability. Finally, through simulation, the configuration and attribute information of structures and mechanical systems constituting underground facilities were implemented in augmented reality. In addition, it was confirmed that the accurate and highly consistent augmented reality system works even in harsh environment (near high-rise building).

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

Development of A Comprehensive Diagnosis Index for Disasters in Declining Areas and Comparison of Risks between Regions: A case of Seoul (쇠퇴지역 재난·재해 종합진단지수 개발과 지역간 위험성 비교·분석 - 서울시 사례 -)

  • Im, Hyojin;Ahn, Minsu;Yi, Changhyo;Lee, Sangmin;Lee, Jae-Su
    • Journal of the Korean Regional Science Association
    • /
    • v.37 no.4
    • /
    • pp.33-47
    • /
    • 2021
  • In urban declining areas, the population is decreasing, and drying environments such as buildings and facilities are aging. Therefore, it is vulnerable in the event of disaster, and recovery takes a lot of time and money. The purpose of this study is to develop an evaluation technique for comprehensively diagnosing disasters in declining areas and to present implications through case analysis. Evaluation indicators were selected to calculate the comprehensive diagnosis index of disasters, and weights were calculated for each class, including disaster types, components, and evaluation indicators, through Analytic Hierarchy Process analysis. The comprehensive diagnoses index for each type of disaster was calculated with the calculated weight, and the risk according to the level of urban decline was analyzed. As a result of analyzing Seoul as a case area, it was analyzed that the overall risk of disasters was high in southern regions such as Seocho-gu, Dongjak-gu, Geumcheon-gu, and Gangseo-gu, and relatively low in downtown and northern Seoul, parks and green areas. The results of this study are of academic significance in that they presented a comprehensive diagnostic index evaluation system and technique for each type of disaster, including natural and social disasters.

A Study on the International Discussion of Digital Trade Norms (디지털 무역규범의 국제적 논의에 관한 연구)

  • Hwang, Ji-Hyeon;Kim, Yong-Il
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.93-100
    • /
    • 2021
  • With the spread of digital trade, the share of digital trade under the global trade environment is increasing. However, since there is no international digital trade standard, the discussion to establish a new trade rule has important significance. Countries around the world are implementing digital trade policies in consideration of their own interests, but different regulatory policies are causing trade conflicts. In order to provide safeguards against personal information infringement due to the free movement of data across borders, major countries around the world have taken measures to localize data, and the EU has enacted GDPR. And the United States regards the imposition of the digital tax as a trade barrier, and some countries oppose the implementation of the digital tax for fear of negative impact on their countries. However, discussions on the global digital tax, centered on the OECD and the G20 are making progress. As it is highly likely that a digital tax agreement will be drawn up within this year, countermeasures must also be prepared. Therefore, this study presents implications for the future direction of Korea's trade policy by examining recent trends in digital trade norms and analyzing major issues in digital trade.

A Study on Method to prevent Collisions of Multi-Drone Operation in controlled Airspace (관제 공역 다중 드론 운행 충돌 방지 방안 연구)

  • Yoo, Soonduck;Choi, Taein;Jo, Seongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.103-111
    • /
    • 2021
  • The purpose of this study is to study a method for preventing collisions of multiple drones in controlled airspace. As a result of the study, it was proved that it is appropriate as a method to control drone collisions after setting accurate information on the ROI (Region of Interest) area estimated based on the expected drone path and time in the control system as a method to avoid drone collision. As a result of the empirical analysis, the diameter of the flight path of the operating drone should be selected to reduce the risk of collision, and the change in the departure time and operating speed of the operating drone did not act as an influencing factor in the collision. In addition, it has been demonstrated that providing flight priority is one of the appropriate methods as a countermeasure to avoid collisions. For collision avoidance methods, not only drone sensor-based collision avoidance, but also collision avoidance can be doubled by monitoring and predicting collisions in the control system and performing real-time control. This study is meaningful in that it provided an idea for a method for preventing collisions of multiple drones in controlled airspace and conducted practical tests. This helps to solve the problem of collisions that occur when multiple drones of different types are operating based on the control system. This study will contribute to the development of related industries by preventing accidents caused by drone collisions and providing a safe drone operation environment.

Reliability-Based Design Optimization of 130m Class Fixed-Type Offshore Platform (신뢰성 기반 최적설계를 이용한 130m급 고정식 해양구조물 최적설계 개발)

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.263-270
    • /
    • 2021
  • In this study, a reliability-based design optimization of a 130-m class fixed-type offshore platform, to be installed in the North Sea, was carried out, while considering environmental, material, and manufacturing uncertainties to enhance its structural safety and economic aspects. For the reliability analysis, and reliability-based design optimization of the structural integrity, unity check values (defined as the ratio between working and allowable stress, for axial, bending, and shear stresses), of the members of the offshore platform were considered as constraints. Weight of the supporting jacket structure was minimized to reduce the manufacturing cost of the offshore platform. Statistical characteristics of uncertainties were defined based on observed and measured data references. Reliability analysis and reliability-based design optimization of a jacket-type offshore structure were computationally burdensome due to the large number of members; therefore, we suggested a method for variable screening, based on the importance of their output responses, to reduce the dimension of the problem. Furthermore, a deterministic design optimization was carried out prior to the reliability-based design optimization, to improve overall computational efficiency. Finally, the optimal design obtained was compared with the conventional rule-based offshore platform design in terms of safety and cost.

Research on Digital twin-based Smart City model: Survey (디지털 트윈 기반 스마트 시티 모델 연구 동향 분석)

  • Han, Kun-Hee;Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.172-177
    • /
    • 2021
  • As part of the digital era, a digital twin that simulates the weak part of a product by performing a stress test that reduces the lifespan of some expensive equipment that cannot be done in reality by accurately moving the real world to virtual reality is being actively used in the manufacturing industry. Due to the development of IoT, the digital twin, which accurately collects data collected from the real world and makes it the same in the virtual space, is mutually beneficial through accurate prediction of urban life problems such as traffic, disaster, housing, quarantine, energy, environment, and aging. Based on its action, it is positioned as a necessary tool for smart city construction. Although digital twin is widely applied to the manufacturing field, this study proposes a smart city model suitable for the 4th industrial revolution era by using it to smart cities and increasing citizens' safety, welfare, and convenience through the proposed model. In addition, when a digital twin is applied to a smart city, it is expected that more accurate prediction and analysis will be possible by real-time synchronization between the real and virtual by maintaining realism and immediacy through real-time interaction.

Key Determinants of Dissatisfaction on COVID-19 Contact Tracing and Exposure Notification Apps (COVID-19 접촉추적과 노출알림 앱사용자의 항의 및 불만요인 탐색)

  • Leem, Byung-hak;Hong, Han-Kook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.176-183
    • /
    • 2021
  • Digital medical technology is very effective and at the same time faces the challenge of protecting privacy. However, for contact tracking and exposure notification apps in COVID-19 environment, there is always a trade-off between privacy measures and the effectiveness of the app's use. Today, many countries have developed and used contact tracking and exposure notification apps in various forms to prevent the spread of COVID-19, but the suspicion of digital surveillance (digital panopticon) is unavoidable. Therefore, this study aims to identify the factors of personal information infringement and dissatisfaction through text mining analysis by extracting user reviews of "Self-Quarantine Safety Protection" in Korea. As a result of the text mining analysis, we derived four groups, 'Address recognition error', 'Exit warning error', 'Access error', and 'App. program error'. Since 'Address recognition error' and 'Exit warning error' can give the app users a strong perception that they are keeping under surveillanc by the app, transparent management of personal information protection and consent procedures related to personal information collection are required. In addition, if the other two groups are not corrected immediately due to an error in an app function or a program bug, the complaints of users can be maximized and a protest against the monitor can be raised.

Numerical Analysis on Effect of Stemming Condition in Mine Ventilation Shaft Blasting (광산 통기수갱발파에서 전색조건이 발파효율에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Jun-ha;Kim, Jung-gyu;Jung, Seung-won;Ko, Young-hun;Baluch, Khaqan;Kim, Jong-gwan
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.15-23
    • /
    • 2021
  • Ventilation shafts are pathways in mines and tunnels for the removal of dust or smoke during underground space construction and operation. In mines, blasting with long blast holes is preferred for the excavation of a ventilation shaft in the 10~20m long crown pillar section. In this case, the bottom part of the blast hole is completely drilled in order to determine the drilling error, and this causes a problem of lowering the explosive charge and blasting efficiency. It is possible to solve the problem of explosive loading and to increase the blast efficiency by covering the curb of the blasthole by using stemming material. In this study, simulations for the blasting of a ventilation shaft were performed with various stemming lengths and the blasthole diameters(45, 76mm) using AUTODYN 2D SPH(Smooth particle hydrodynamics) analysis technique. Also the optimal bottom stemming column was derived by checking the size of the boulder and burden line according to blasting. Analysis result, blasting efficiency is lessened in case of stemming length less than 30cm and the optimal length of the stemming material should be 30cm or higher to achieve high efficiency of blasting.