• Title/Summary/Keyword: 안전 정지지진

Search Result 35, Processing Time 0.029 seconds

국내 원자력 관련시설의 지진에 대한 대비

  • 유봉
    • Nuclear industry
    • /
    • v.15 no.2 s.144
    • /
    • pp.42-45
    • /
    • 1995
  • 모든 원자력관련시설들은 지진으로부터 공공에 아무런 피해를 주지 않는 안전한 설계를 위하여, 일반구조물인 건물, 교량 등의 설계$\cdot$건설을 위하여 정해져 있는 내진설계법규보다도 훨씬 보수적으로 내진설계를 규정하는 원자력법규에 따라 설계 건설되고 있다. 국내의 원자력법규에 정해진 설계기준지진은 안전정지지진(Safe Shutdown Earthquake, SSE)이라 하며, 국내의 원자력발전소 및 원자력관련시설은 안정정지지진의 지반가속도 크기를 0.2g(g는 중력가속도, 1g= 1,000gal=980cm/$sec^2$)로 정하여 사용되고 있다.

  • PDF

Seismic and Structure Analysis of a Temporary Rack Construction in a Nuclear Power Plant (원자력 발전소 공사용 임시받침대의 내진 및 구조해석)

  • Kim, Heung-Tae;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1265-1271
    • /
    • 2011
  • In this study, the safety of a rack structure was evaluated through seismic analysis considering fluid-structure interactions using a finite-element model. The rack structure was immersed under water, so it was influenced by the water. The fluid-structure interaction can be specified in terms of the hydrodynamic effect, which is defined as the added mass per unit length. Modal analysis and seismic analysis using the Floor Response Spectrum (FRS) were carried out under Operating Basis Earthquake (OBE) and Safe Shutdown Earthquake (SSE) conditions. The analytical maximum displacements of the rack structure were 0.29 and 0.36 mm under OBE and SSE conditions, respectively. The maximum stresses were 17.9 MPa under OBE conditions and 19.6 MPa under SSE conditions; these results corresponded to 23 % and 14% of the yield strength of the applied material, respectively.

국내외 지진발생 현황과 국내원전의 안전성 평가

  • 김영식
    • Nuclear industry
    • /
    • v.15 no.7 s.149
    • /
    • pp.56-59
    • /
    • 1995
  • 국내 원전은 내진성 확보를 위해 부지의 선정단계에서는 원전의 예상입지를 중심으로 320km 내의 지진특성과 과거지진기록을 면밀히 분석$\cdot$반영하고, 부지중심으로 반경 8km 내에 대해서는 정밀지질조사를 실시하여 단층대나 연약지반 등 지진발생 가능지역은 제외시키고 있으며, 구조물의 설계와 설치시에는 과거의 지진발생기록을 근거로 하여, 발전소 인근지역에서 발생이 가능한 최대 지진과 부지의 지반특성, 그리고 구조물의 하중 등을 복합적으로 고려하여 내진설계하고 있다. 가동중에는 각종 자동지진감시계통이 지진발생 여부를 지속적으로 계측한 후에, 설계지진값의 절반인 지반가속도 0.1g 이상의 지진을 감지하면 자동경보장치를 작동시켜 즉각 운전이 정지되도록 설계되어 있다.

  • PDF

The Effect of Seismic Level Increase on the Reactor Vessel Internals and Fuel Assemblies for the Korean Standard Suclear Power Plant (지진레벨의 증가가 한국표준형 원자력발전소의 원자로 내부구조물 및 핵연 료 집합체에 미치는 영향)

  • Jhung, M. J.
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.33-41
    • /
    • 1997
  • To cover a range of possible site conditions where the Korean standard nuclear power plant may be constructed, a range of generic site conditions is selected for geologic and seismologic evaluation. To envelop other Asian countries as well as the Korean peninsula, there is an attempt to increase the seismic level to 0.3g ground motions for the safe shutdown earthquake. The dynamic analyses of the reactor vessel internals and fuel assemblies are performed for the increased motions and the effect of seismic level on the response is investigated. Also the nonlinear response characteristics are discussed by comparing the loads between operating basis earthquake and safe shutdown earthquake excitations. The design adequacy of the reactor vessel internals and fuel assemblies for the increased seismic level is addressed.

  • PDF

Long-Rails Stress Analysis of High-Speed Railway Continuous Bridges Subject to Operating Basis Earthquake (사용지진을 고려한 고속철도 연속교 장대레일의 응력 해석)

  • 김용길;권기준;고현무
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.59-66
    • /
    • 2002
  • Long-rails in railways and high-speed railway are subjected to additional stresses resulted from the displacements inconsistence between upper structures, and this phenomenon is more remarkable in continuous bridges than in simple bridges. For the sake of safety, railways have to guarantee trains to stop safely without derailment even in the event of earthquake. The influences of acceleration, braking, and temperature were analyzed by static nonlinear method. But earthquake loads that require dynamic nonlinear analysis are not considered in these methods. Because linear relation between relative displacements of decks and rail stresses is not guaranteed at the nonlinear systems such as long rails on the bridges, it is required compute to rail stresses considering both braking and earthquake load by nonlinear dynamic analysis method. In this study, dynamic analysis method with material non-linearity for rails on continuous bridges according to the Taiwan High Speed Railway(THSR) Design Specification volume 9 was developed. And additional stresses and displacements of long rails for acceleration, braking, and earthquake loads were analyzed by this method.

Seismic Analysis of Traveling Sea Water Screen (해수여과장치의 내진해석)

  • Kim, Heung-Tae;Lee, Young-Shin;Park, Young-Moon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.289-294
    • /
    • 2011
  • In this study, the seismic analysis of traveling sea water screen for nuclear power plant was performed using finite element model. For qualification of traveling sea water screen, the response spectrum analysis was performed using the given operating basis earthquake(OBE) and safe shutdown earthquake(SSE) floor response spectrum. Dynamic analysis of water sea traveling screen was performed using finite element method. The analytical maximum displacements of traveling sea water screen were 2.5 mm under OBE condition and 4.6 mm under SSE condition. The maximum stresses of traveling sea water screen were 24 MPa under OBE condition and 44 MPa under SSE condition, that this results were 18 %, 27% of yield strength of material. Thus, it can shown that the structural integrity of traveling sea water screen has a stable structure for seismic load conditions.

A Study on the Quality Improvement of Real-Time Earthquake Data (실시간 지진데이터 품질향상을 위한 연구)

  • Yoon, Jin-sub;Ryu, Se-hwan;Jeong, Ji-eun;Park, Ji-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.306-309
    • /
    • 2022
  • Recently, the frequency of earthquakes is rapidly increasing in Korea. As a result, concerns about earthquakes are increasing. Response and recovery in the event of an earthquake are also important, but it is necessary to identify management vulnerabilities in advance and perform prevention and preparation activities. K-water collects real-time earthquake data by operating an earthquake accelerator to manage facilities safe from earthquakes. In addition, real-time data is transmitted to external organizations. Therefore, various efforts are being made to improve the quality of data. In order to reduce the management vulnerability of the earthquake monitoring system in advance, high-quality data can be produced by minimizing the delay time of data collection and establishing a real-time quality analysis system and base for earthquake data using big data. Accordingly, it is expected to protect the lives and property of the people from earthquake disasters by securing dam safety management and high-quality earthquake data and providing rapid data to external institutions.

  • PDF

Seismic Analysis of Traveling Sea Water Screen (해수 여과장치의 내진해석)

  • Kim, Heung-Tae;Lee, Young-Shin;Park, Young-Moon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.462-465
    • /
    • 2011
  • 본 논문에서는 유한요소모델을 사용하여 원자력 발전용 해수 여과장치에 대한 동적 내진해석을 수행하였다. 장치의 검증을 위해서 운전기준지진(Operating Basis Earthquake, OBE)과 안전정지지진(Safe Shutdown Earthquake, SSE)이 설계하중으로 작용하였을 때 부재에 미치는 영향을 평가하였다. 해석대상은 유한요소법을 사용하여 수학적 모델링을 완성하였고, 층응답스펙트럼(Floor Response Spectrum, FRS)에 따른 지진하중과 사하중등을 적용하여 해석을 수행하였다. 해석된 해수여과장치의 최대변위는 OBE 조건에서 2.5 mm 이고, SSE 조건에서 최대변위는 4.6 mm 이다. 최대응력은 OBE 조건에서 24 MPa, SSE 조건에서 44 MPa이며, 이 값은 재료의 항복강도의 각각 18%, 27% 수준이다. 이에 따라 지진하중조건에 따른 해수여과장치의 구조적 안전성이 제시되었다.

  • PDF

Bayesian Network-based Probabilistic Safety Assessment for Multi-Hazard of Earthquake-Induced Fire and Explosion (베이지안 네트워크를 이용한 지진 유발 화재・폭발 복합재해 확률론적 안전성 평가)

  • Se-Hyeok Lee;Uichan Seok;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.205-216
    • /
    • 2024
  • Recently, seismic Probabilistic Safety Assessment (PSA) methods have been developed for process plants, such as gas plants, oil refineries, and chemical plants. The framework originated from the PSA of nuclear power plants, which aims to assess the risk of reactor core damage. The original PSA method was modified to adopt the characteristics of a process plant whose purpose is continuous operation without shutdown. Therefore, a fault tree, whose top event is shut down, was constructed and transformed into a Bayesian Network (BN), a probabilistic graph model, for efficient risk-informed decision-making. In this research, the fault tree-based BN from the previous research is further developed to consider the multi-hazard of earthquake-induced fire and explosion (EQ-induced F&E). For this purpose, an event tree describing the occurrence of fire and explosion from a release is first constructed and transformed into a BN. And then, this BN is connected to the previous BN model developed for seismic PSA. A virtual plot plan of a gas plant is introduced as a basis for the construction of the specific EQ-induced F&E BN to test the proposed BN framework. The paper demonstrates the method through two examples of risk-informed decision-making. In particular, the second example verifies how the proposed method can establish a repair and retrofit strategy when a shutdown occurs in a process plant.