• Title/Summary/Keyword: 안전 압력

Search Result 940, Processing Time 0.027 seconds

Evaluation on Performance of Hybrid Heating System with Solar Collector of Thermosyphon Tube Type (열사이폰관형 태양열집열기를 주열원으로 하는 하이브리드 난방시스템 성능 평가)

  • Chun, Tae-Kyu;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.356-361
    • /
    • 2012
  • Recently, even though the researches on renewable energy like geothermal, wind, solar energy have been performed widely, its use-rate in total energy is still low. This study was carried out to investigate the performance of hybrid heating system, which consisted of solar collector of thermosyphon tube type and X-L pipe boiler. Especially, new type of solar collector was tried and compared with double tube type and, futhermore, performance and safety on X-L pipe boiler were investigated. As the results, efficiency of solar collector of thermosyphon tube type was higher 20.7% than that of double tube type, mainly due to its structural characteristics. It was also confirmed that temperature of special heat medium used X-L pipe boiler rose up about 20% rapidly in comparison with that of pure water.

Shape Change Analysis of a Small Propane Container by Pressure Test (소형프로판용기 내압시험을 통한 용기의 형상변화 분석)

  • Lee, Jong-Sang;Jang, Kap-Man;Lee, Yoon Hyoung;Yim, Sang-Sik;Lee, Jin-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.40-44
    • /
    • 2014
  • In this study, it is analyzed that a change in the shape of small propane containers made of STS304 when increasing of internal pressure. When internal pressure of a small propane container increased, bottom of end plate is convexly changed. This test is applied to a water bath pressure test to analyze the characteristics of the container. Water bath is able to analyze relationship between internal pressure and volume. In result, shape change section is confirmed because bottom of end plate is convexly changed. In addition, this section tend to decrease internal pressure because a volume increment increase out of proportion to pressure. The results of this study are expected to contribute to improving the safety of the pressure vessel, as well as various small propane container.

Aerodynamic Effects of Gun Gas on the Aircraft's Armament System (항공기 무장시스템 Gun Gas 공력특성에 관한 연구)

  • Choi, Hyoung Jun;Kim, Seung Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.623-629
    • /
    • 2020
  • This study examined the airflow field around a gun port on the flight condition of gunfire to verify the aircraft performance and safety effects and gun gas rate, path according to the options of diverter configuration. The gun port diverter not only effectively lowered the heat generated by gunfire but also effectively discharged the gun gas upwards. The path of gun gas can be changed according to its configuration. According to the optional configuration of the rear-gun-port diverter, the flow rate, path, and pressure of the gun gas were analyzed during gunfire. An analysis of the internal velocity distribution and the temperature change of the gun port revealed a rapid decrease in flow rate through the rear diverter according to the option configuration. The forward flow rate showed a similar tendency with little change. This ensures that the gun gas generated during gunfire has a sufficient flow distance from the aircraft surface, regardless of the rear gun port diverter's optional configuration. The flow stagnation of gun gas according to the option configuration of diverter had a great influence on the internal temperature rise of a gun port.

A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production (수소 생산을 위한 SI Cycle 공정에서의 중간 열교환 공정 모사 연구)

  • Shin, Jae Sun;Cho, Sung Jin;Choi, Suk Hoon;Qasim, Faraz;Lee, Heung N.;Park, Jae Ho;Lee, Won Jae;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.459-466
    • /
    • 2014
  • SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions.

Molding Analysis for the Production of Large Sun Visors in Vehicles (차량용 대형 선바이저 생산을 위한 성형해석)

  • Park, Jong-Nam;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.610-615
    • /
    • 2016
  • Diverse accessories are used in automobiles, such as navigation systems, front and rear cameras, spoilers, and sun visors. Sun visors block sunlight so that drivers can drive safely with a better view, and they are used in many automobile designs. However, when large plastic products are manufactured using injection molding, there are many difficulties that develop, like weld lines, short shots, flow marks, imperfections, and distortion. In this study, a CAE simulation was conducted based on previous results to predict potential problems in the injection molding of large products. The flow characteristics up to complete charge for the melting resins were captured using a computer-aided engineering simulation. The temperature departure on the front part of a flow was about $10^{\circ}C$ and very stable. The practical ejecting time of the cold runner was about 70 seconds in the simulation. Finally, the capability of a suitable injection machine was calculated and recommended by prediction of the injection pressure and the die clamping force.

The Wind Pressure Stability Analysis of the Platform Screen Door in Urban Railway (도시철도 승강장 스크린 도어의 풍압 안정성 해석)

  • Song, Moon-Shuk;Lee, Seung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • Installation of screen doors at platform ensures safety of passengers by separating platform from tracks. Besides, it reduces drought and air pressure caused by train conserves heating and cooling energy in the station. In order to guarantee safety of platform screen doors, design considering evaluation of wind pressure requires. In this study, Sosa station, semisealed screen door and EMU are analyzed to estimate the wind pressure of platform screen doors model. Also Sosa station is influenced by climatic condition because it exposed to outside. Therefore, analysis on the wind pressure of platform screen doors is performed under the worst weather condition such as typhoon. The results of analysis, Maximum inside pressure 287 Pa, and consideration of outside pressure as typhoon to the maximum design pressure of 865 Pa 2756.25 Pa conditions approximately 3.1 times the difference can be seen that ensure stability.

Thermal-Hydro-Mechanical Behaviors in the Engineered Barrier of a HLW Repository: Engineering-scale Validation Test (고준위폐기물처분장 공학적방벽의 열-수리-역학적 거동 연구: 엔지니어링 규모의 실증실험)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.464-474
    • /
    • 2007
  • An enhancement in the performance and safety of a high-level waste repository requires a validation of its engineered barrier. An engineering-scale test (named "KENTEX") has been conducted to investigate the thermal-hydro-mechanical behaviors in the engineered barrier of the Korean reference disposal system The validation test started on May 31, 2005 and is still under operation. The experimental data obtained allowed a preliminary and qualitative interpretation of the thermal-hydro-mechanical behaviors in the bentonite blocks. The temperature was higher as it became closer to the heater, while it became lower as it was farther away from the heater. The water content had a higher value in the part close to the hydration surface than that in the heater part. The relative humidity data suggested that a hydration of the bentonite blocks might occur by different drying-wetting processes, depending on their position. The total pressure was continuously increased by the evolution of the saturation front in the bentonite blocks and thereby the swelling pressure. Near the heater region, there was also a significant contribution of the thermal expansion of bentonite and the vapor pressure in the pores of the bentonite blocks.

TPMS Interference Suppression Based on Beamforming (Beamforming을 이용한 TPMS 간섭제거)

  • Hwang, Suk-Seung;Kim, Seong-Min;Park, Cheol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.180-185
    • /
    • 2011
  • The TPMS(Tire Pressure Monitoring System) is an electronic system designed to display the air pressure inside the pneumatic tires and report real-time tire-pressure information to the driver of the vehicle, either via a gange, a pictogram display, or a simple low-pressure warning light. Although the data measured by TPMS sensor is transmitted to internal signal processer in a vehicle through wireless communication, the receiver may suffers from various interferences such as amateur radio station, RFID(Radio-Frequency IDentification) for controlling container, RKE(Remote Keyless Entry) signal, and so on. In this paper, we consider beamforming technology to suppress various high-power interference signals for the TPMS wireless communications. Also, we propose the proper data structure and antenna arrangement for the beamformer inside the vehicle. The performance for the interference suppression is illustrated by computer simulation example.

Comparison of Behaviors for Underground Flexible Pipes with Installation Gap (관로 이격거리에 따른 지중매설관의 거동특성 비교)

  • 이대수;상현규;김경열;홍성연
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.79-87
    • /
    • 2003
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance of electric cables. In this paper, stress and strain of flexible pipes with two types of installation gap, ie, l0cm and naught, were compared to investigate the structural integrity of pipes from actual field test. The effect of degree of compaction and burial depth were also investigated to simulate the variety of construction situation. The results of the field test show that the strain criteria were satisfied under the burial depths of 80cm, 100cm and 120cm regardless of installation gap.

Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest (랜덤 포레스트 분류기 기반의 컨벌루션 뉴럴 네트워크를 이용한 속도제한 표지판 인식)

  • Lee, EunJu;Nam, Jae-Yeal;Ko, ByoungChul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.938-949
    • /
    • 2015
  • In this paper, we propose a robust speed-limit sign recognition system which is durable to any sign changes caused by exterior damage or color contrast due to light direction. For recognition of speed-limit sign, we apply CNN which is showing an outstanding performance in pattern recognition field. However, original CNN uses multiple hidden layers to extract features and uses fully-connected method with MLP(Multi-layer perceptron) on the result. Therefore, the major demerit of conventional CNN is to require a long time for training and testing. In this paper, we apply randomly-connected classifier instead of fully-connected classifier by combining random forest with output of 2 layers of CNN. We prove that the recognition results of CNN with random forest show best performance than recognition results of CNN with SVM (Support Vector Machine) or MLP classifier when we use eight speed-limit signs of GTSRB (German Traffic Sign Recognition Benchmark).