• Title/Summary/Keyword: 안전헬멧

Search Result 45, Processing Time 0.024 seconds

Finite Element Analysis on the Stress and Deformation Behaviors of a Safety Helmet (안전헬멧의 응력 및 변형거동에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • This paper presents the stress and deformation behaviors using the finite element method as a function of the thickness of the helmets without the bead frames on the top of the shell structure. The helmet that would provide head and neck protections without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and impact energy absorption. The FEM computed results show that when the impulsive force is applied on the top surface of a helmet, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the top surface of the helmet shell. As the helmet thickness is decreased from 4mm to 2mm, the impact energy absorbing rate is radically increased, and the maximum stress of the helmet is increased over the tensile strength, 54.3MPa of the thermoplastic material. Thus, the top surface of the helmet should be supported by a bead frame and increased thickness of the shell structure.

  • PDF

A Study on the Strength Analysis of the Helmets for Fire and Gas Safety (소방.가스안전용 헬멧의 강도안전성에 관한 연구)

  • Kim, Han-Goo;Shim, Jong-Hyun;Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, the strength analysis has been presented for the stress and strain by using the finite element method for various shell models of the helmets. The advanced helmet that would provide head protection without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and workability of the workers. We need a safe, comfortable and light weight of the helmet shell structure. Thus, the helmets had to stand up to the most rigorous conditions encountered for the fire and gas explosion. The FEM computed results show that when the impulsive force is applied on the summit area of a helmet shell structure, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the summit of the helmet shell. Thus, the summit area of the helmet shell should be supported by a bead frame and increased thickness of the bead. But the overall thickness of the helmet is to decrease for the light weight of a helmet.

  • PDF

Numerical Study on the Strength Safety and Displacement Behaviors of a Helmet (헬멧의 강도안전과 변형거동에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.41-45
    • /
    • 2008
  • This paper presents the numerical study on the strength safety and displacement behaviors of a helmet, which is to protect impact forces and to absorb the impact energy. Four different helmet models including a bead frame and a corrugation damper have been analyzed for the stress and the displacement characteristics by using the finite element method. The computed FEM results show that the bead frame on the summit area of the helmet is very useful to increase the strength safety of the helmet, and the corrugation damper on the lower part of the helmet may increase the energy absorption capacity. Thus, this paper recommends the bead frame and the corrugation damper as new design elements of the helmets.

  • PDF

Finite Element Analysis on the Displacement Behavior Characteristics of a Safety Helmet with a Corrugation Damper (주름댐퍼를 갖는 안전헬멧의 변형거동특성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.22-26
    • /
    • 2009
  • In this paper, the displacement behavior and strain energy density characteristics of a safety helmet with various corrugation dampers has been analyzed based on the finite element analysis. The safety helmet is to protect impact forces and to absorb the impact energy. Three different helmet models with a corrugation damper have been compared as functions of the displacement and strain energy density characteristics when the maximum external impulsive force is imposed on the summit of the helmet. The computed FEM results show that the extruded corrugation damper is very useful to increase the damping effect of the helmet. This study indicates that the round corrugation damper may absorb the transferred impact energy successfully. Thus, this paper recommends round and long corrugation damper on the lower part of the helmet as a new design element.

  • PDF

A Study on the Optimized Design of the Helmets for Fire and Gas Safety (소방.가스안전용 헬멧의 최적설계에 관한 연구)

  • Cho, Seung-Hyun;Kim, Do-Hyun;Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.24-30
    • /
    • 2008
  • In this paper, the stress and strain characteristics of a helmet shell structure have been analyzed by using the finite element method and Taguchi's design method as functions of the material properties, the thickness of a helmet, the thickness and the number of a bead frame. The optimized design of the helmets for a firefighter and a gas worker is very important for increasing the strength safety and an impact energy absorption capacity of a helmet shell due to an impulsive external force. Thus, the optimized design data of the helmet indicated that the uniform thickness of a helmet shell may be reduced for reducing the total weight of a helmet and increasing the strain energy absorption rate, but the thickness and the number of a bead frame would be increased for increasing the impact strength of the helmet.

  • PDF

A Study on the Development of Smart Helmet for Forest Firefighting Crews (산불진화대원용 스마트 헬멧 개발에 관한 연구)

  • Ha, Yeon-Chul;Jin, Young-Woo;Park, Jae-Mun;Doh, Hee-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2021
  • The purpose of this study is to develop a Smart Helmet to safeguard forest firefighting crews and provide on-site information in real time. The Smart Helmet for forest firefingting crews is equipped with a camera, video/voice communication module, GPS, Bluetooth, and LTE module to promote the safety of them, and through the Smart Helmet, the site situation is is transmitted in real time, and full duplex communication is possible. As a result of testing using the Smart Helmet, the control center was able to receive on-site information and communication with on-site forest firefighting crews. Through site evaluation and user evaluation, it was confirmed that the Smart Helmet needs to be improved. The developed Smart Helmet can be used in various ways in forest disasters and forest industry.

Performance Evaluation Criteria for Safety Helmets of Forest Firefighting Crews (산불진화대원용 안전헬멧에 대한 성능평가 기준 연구)

  • Hong, Seung-Tae;Jeong, Jae-Han;Kim, Sung Yong;Kwon, ChunGeun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.66-77
    • /
    • 2019
  • To secure the safety and improve the work efficiency of forest firefighting crews, performance evaluation criteria for safety helmets were developed in this study. Because the standards for forest firefighting safety helmets are not available in Korea, we began our study based on the standards for firefighting safety helmets used by the Korea Fire Institute (KFI). Eleven test items were selected excluding 15 other items out of the 26 test items that, through the consultation of stakeholders and the review of foreign standards, were initially included in our study. Two types of general safety helmets and one firefighting helmet were tested by applying KFI standards, and the results were compared. The general safety helmets did not meet the standards of the retention system and chin strap. Additionally, polyethylene and acrylonitrile butadiene styrene materials were found to be especially weak under heat conditions. We compared the criteria of KFI, International Standardization Organization (ISO) 16073, National Fire Prevention Association (NFPA) 1977, NFPA 1971, and British Standards European Norm (BS EN) 443, and finally selected 11 test items and their acceptance criteria suitable for the work environment of forest firefighting crews in Korea.

Helmet and Mask Classification for Personnel Safety Using a Deep Learning (딥러닝 기반 직원 안전용 헬멧과 마스크 분류)

  • Shokhrukh, Bibalaev;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.473-482
    • /
    • 2022
  • Wearing a mask is also necessary to limit the risk of infection in today's era of COVID-19 and wearing a helmet is inevitable for the safety of personnel who works in a dangerous working environment such as construction sites. This paper proposes an effective deep learning model, HelmetMask-Net, to classify both Helmet and Mask. The proposed HelmetMask-Net is based on CNN which consists of data processing, convolution layers, max pooling layers and fully connected layers with four output classifications, and 4 classes for Helmet, Mask, Helmet & Mask, and no Helmet & no Mask are classified. The proposed HelmatMask-Net has been chosen with 2 convolutional layers and AdaGrad optimizer by various simulations for accuracy, optimizer and the number of hyperparameters. Simulation results show the accuracy of 99% and the best performance compared to other models. The results of this paper would enhance the safety of personnel in this era of COVID-19.

Smart helmet with two ultrasonic sensors (두 개의 초음파 센서를 이용한 스마트 안전 헬멧)

  • Kim, Sang-Hyun;Lee, Seung-min;Kim, Gun-Hee;Kim, Hyun;Ko, young-Jun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1220-1221
    • /
    • 2017
  • 최근 많은 사람들이 자전거 및 전동 스쿠터 등을 이용한 여가활동이 확산되고 있는 실정이다. 그러나 이러한 상황에 대비해 발생되는 관련 사고가 한해 평균 1.5만건 이상으로 지속적으로 증가하고 있다. 특히 사고와 관련해 전방 부주의로 일어나는 사고 보다는 측면 및 후방에서의 장애물을 인지하지 못해 발생하는 사고가 60%나 된다고 한다. 본 프로젝트는 이러한 현상의 감소에 일조하기 위해 안전에 필수인 헬멧에 스마트 센서를 장착해 전, 측, 후방을 사전에 감지하고 이를 사용자에게 알릴 수 있는 스마트 안전 헬멧에 관한 내용을 다루고 있다.

Ultrasonography senser and Kalman filter algorithm exploit smart safety helmet (초음파 센서와 칼만필터 알고리즘을 이용한 스마트 안전 헬멧)

  • Ryu, hee-hwan;Kim, Jingu;Ko, Yeongjun;Kim, Hyeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.594-597
    • /
    • 2017
  • 본 연구는 초음파 센서를 이용해 사물을 측정하고 이의 오차를 줄이기 위해 칼만필터 알고리즘을 이용하였다.[1][2] 이는 안전 헬멧의 이용자들이 전방의 장애물을 사전인지 하는데 있어 활용하고자 하였다. 최근 안전사고가 증가하면서 전방 또는 후방의 장애물로 인한 사고가 급증하고 있는 추세이다. 헬멧에 원거리 측정 센서를 장착해 전, 측, 후방을 사전에 감지하고 이를 사용자에게 알려 사고를 예방하고자 하였다.