• Title/Summary/Keyword: 안전한 활용

Search Result 8,404, Processing Time 0.042 seconds

A Study on the Conceptual Development for a Deep Geological Disposal of the Radioactive Waste from Pyro-processing (파이로공정 발생 방사성폐기물 심지층 처분을 위한 개념설정 연구)

  • Lee, Jong-Youl;Lee, Min-Soo;Choi, Heui-Joo;Bae, Dae-Seok;Kim, Kyeong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.219-228
    • /
    • 2012
  • A long-term R&D program for HLW disposal technology development was launched in 1997 in Korea and Korea Reference disposal System(KRS) for spent fuels had been developed. After then, a recycling process for PWR spent fuels to get the reusable material such as uranium or TRU and to reduce the volume of radioactive waste, called Pyro-process, is being developed. This Pyro-process produces several kinds of wastes including metal waste and ceramic waste. In this study, the characteristics of the waste from Pyro-process and the concepts of a disposal container for the wastes were described. Based on these concepts, thermal analyses were carried out to determine a layout of the disposal area of the ceramic wastes which was classified as a high level waste and to develop the disposal system called A-KRS. The location of the final repository for A-KRS is not determined yet, thus to review the potential repository domains, the possible layout in the geological characteristics of KURT facility site was proposed. These results will be used in developing a repository system design and in performing the safety assessment.

Internal Dose Assessment of Worker by Radioactive Aerosol Generated During Mechanical Cutting of Radioactive Concrete (원전 방사성 콘크리트 기계적 절단의 방사성 에어로졸에 대한 작업자 내부피폭선량 평가)

  • Park, Jihye;Yang, Wonseok;Chae, Nakkyu;Lee, Minho;Choi, Sungyeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2020
  • Removing radioactive concrete is crucial in the decommissioning of nuclear power plants. However, this process generates radioactive aerosols, exposing workers to radiation. Although large amounts of radioactive concrete are generated during decommissioning, studies on the internal exposure of workers to radioactive aerosols generated from the cutting of radioactive concrete are very limited. In this study, therefore, we calculate the internal radiation doses of workers exposed to radioactive aerosols during activities such as drilling and cutting of radioactive concrete, using previous research data. The electrical-mobility-equivalent diameter measured in a previous study was converted to aerodynamic diameter using the Newton-Raphson method. Furthermore, the specific activity of each nuclide in radioactive concrete 10 years after nuclear power plants are shut down was calculated using the ORIGEN code. Eventually, we calculated the committed effective dose for each nuclide using the IMBA software. The maximum effective dose of 152Eu constituted 83.09% of the total dose; moreover, the five highest-ranked elements (152Eu, 154Eu, 60Co, 239Pu, 55Fe) constituted 99.63%. Therefore, we postulate that these major elements could be measured first for rapid radiation exposure management of workers involved in decommissioning of nuclear power plants, even if all radioactive elements in concrete are not considered.

GIS-based Study on Residential and Neighboring Environment and Residents' Social Exclusion in Slum Area (쪽방밀집지역의 주거환경과 주민들의 사회적 배제에 대한 GIS 활용 연구)

  • Kim, Dong-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.8
    • /
    • pp.209-225
    • /
    • 2017
  • This study examines the effect of residential and neighboring environment on the residents' social exclusion in Daejeon Chokbangchon, the city's slum area. Based on GIS methodology with residents' addresses and other characteristics, this study finds out the feminization and the ageing trends in the central part of this area. Besides, longitudinal data between 2007 to 2016 shows this area's depopulation resulting in people's spread into other parts of the city. This study took pictures of 252 images of in the streets and indoors, analysed them and defined the problems of residential and neighboring environment. According to this picture analysis, the predicaments of this area was categorized into 4 types such as appearance-hygiene, narrowness-lack of residential functions, safety-privacy violation and stigma. This area ranging 1 km from north to south adjacent with Daejeon railway station was divided into 4 sections with different main problems. The follow-up survey for residents living in each section showed each section was different in work state, neighbor satisfaction, stigma and social exclusion. Finally, residential satisfaction was found to be the most important affecting factor on social exclusion. Based on these results, this study suggests government's housing policy on this area to be more enthusiastic and specific to cope with each problems of sections.

Extraction of Road Information Based on High Resolution UAV Image Processing for Autonomous Driving Support (자율주행 지원을 위한 고해상도 무인항공 영상처리 기반의 도로정보 추출)

  • Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.355-360
    • /
    • 2017
  • Recently, with the development of autonomous vehicle technology, the importance of precise road maps is increasing. A precise road map is a digital map with lane information, regulations, safety information, and various road facilities. Conventional precise road maps have been tested and developed based on the mobile mapping system (MMS). But they have not been activated due to high introduction costs. However, in the case of unmanned aerial vehicles (UAVs), the application field is continuously increasing. This study tries to extract information through classification of high-resolution UAV images for autonomous driving. Autonomous vehicle test roads were selected as study sites, and high-resolution orthoimages were produced using UAVs. In addition, the utilization of high-resolution orthoimages has been proposed by effectively extracting data for precise road map construction, such as road lines, guards, and machines through image classification. If additional experimentation and verification are performed, the field of UAV image use will be expanded, providing the data to automobile manufacturers and related public and private organizations, and venture companies will contribute to the development of domestic autonomous vehicle technology.

A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete (무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.661-671
    • /
    • 2018
  • Domestic studies on steel plate concrete structures have focused on nuclear structures with high strength. In this study, the SC structure was applied to the general structure, and the SC structure that is advantageous in terms of safety and construction was limited to a special structure. As a basic study for applying SC, this paper proposes basic design information of a SC structure applying cement concrete to plan the structure, which is suitable for eco - friendliness by replacing concrete cement, an important factor in a SC structure, with blast furnace slag. This study examined the compression characteristics and the effective length factor under central compression load. To calculate the effective length factor, the Euler column theory was applied without applying plate theory. The effective length factor was calculated from the yield strength of the steel plate, buckling of the steel plate, and the point at which the concrete was broken. In addition, this study examined whether the maximum compressive strength meets the national and international reference equations with the slenderness ratio (B/t) as a parameter. By analyzing the buckling of the specimen by applying the column theory and selecting the strain of the measured steel plate, the effective length factor was analyzed and compared with the value presented in the reference equation.

Fault Detection Method for Beam Structure Using Modified Laplacian and Natural Frequencies (수정 라플라시안 및 고유주파수를 이용한 보 구조물의 결함탐지기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.611-617
    • /
    • 2018
  • The application of health monitoring, including a fault detection technique, is needed to secure the structural safety of large structures. A 2-step crack identification method for detecting the crack location and size of the beam structure is presented. First, a crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape obtained from the distributed local strain data. The crack location and size were then identified based on the natural frequencies obtained from the acceleration data and the neural network technique for the pre-estimated crack occurrence region. The natural frequencies of a cracked beam were calculated based on an equivalent bending stiffness induced by the energy method, and used to generate the training patterns of the neural network. An experimental study was carried out on an aluminum cantilever beam to verify the present method for crack identification. Cracks were produced on the beam, and free vibration tests were performed. A crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape, and the crack location and size were assessed using the natural frequencies and neural network technique. The identified crack occurrence region agrees well with the exact one, and the accuracy of the estimation results for the crack location and size could be enhanced considerably for 3 damage cases. The presented method could be applied effectively to the structural health monitoring of large structures.

Conceptual Design of the Fuel Injection Valve Tester for ME-LGI Marine Engine by Using System Engineering (ME-LGI 선박엔진용 연료분사밸브 테스터 개발을 위한 시스템 엔지니어링 기반 개념 설계)

  • Noh, Hyonjeong;Kang, Kwangu;Bae, Jaeil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.681-688
    • /
    • 2018
  • As environmental regulations have been strengthened and high fuel efficiency has been in demand in recent years, the number of ships using natural gas as a fuel is increasing. The demand for ships using LPG or methanol, which are emerging as eco-friendly vessel fuels, is also increasing. In this perspective, ME-LGI engines using LPG or methanol as a fuel have attracted considerable attention. Ships equipped with an ME-LGI engine are required to check the reliability of the fuel injection valve during shipping. This means that the development of a fuel injection valve tester is essential for the commercialization of ME-LGI engine. This study conducted the conceptual design of a fuel injection valve tester for ME-LGI engines using a system engineering process in the order of requirements analysis, functional analysis, and design synthesis. In the requirement analysis stage, the operating process of fuel injection valve was analyzed, and the necessity of checking the sealing oil leakage was then derived. In the functional analysis stage, the functions and flow of them were defined at each functional level. In the design synthesis stage, the equipment for each function was set and the process block diagram based on it was derived. In addition, preliminary risk analysis was performed as a part of system analysis and control, and safety measures were added to the conceptual design. This study is expected to be a good reference material for the concept design of other systems in the future because it shows the application process of a system engineering process to the conceptual design in detail.

A Study on the Korea Smart City Certification Index and Demonstration Authentication (국내 스마트시티 인증 지표 및 시범 인증에 관한 연구)

  • Han, Sun-Hee;Shin, Young-Seob;Yu, In-Jae;Lee, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.688-698
    • /
    • 2018
  • The government has recognized the importance of smart city indicators and prepared the legal grounds for the certification of smart cities in the recently revised "Act on Smart City Development and Industrial Promotion." This study derived smart city indicators adequate for the domestic conditions and compatible with the overseas trends by examining and complementing the indicators through an AHP analysis based on consultations and interviews (surveys) with experts and local government officials, who are actually carrying out related projects. In addition, the adequacy and reliability of the indicators were confirmed by verifying and certifying the Korean local governments' smart city plans through demand surveys on a trial basis. This study is meaningful in that it systematically studies the smart city indicators that have gained in importance and reviews their application. The findings of this study can be used as a basis for implementing a smart cities certification system in the future. Recently, the Special Committee on Smart Cities was established under the Committee for the Fourth Industrial Revolution. This committee is composed of civilian members and is working with the Ministry of Land, Infrastructure, and Transport, the Ministry of Science and ICT, etc., to promote the creation of smart cities. It is expected that smart city indicators that include the levels of both domestic and overseas smart cities will boost the active spread of such cities in Korea.

The Relationship between Damage Pattern and Structural Performance for 7-Wire Strand of Stay Cables (사장교 케이블용 7연선 손상 패턴과 구조성능 수준과의 관계 분석)

  • Seo, Dong-Woo;Na, Wongi;Kim, Byung-Chul;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.810-816
    • /
    • 2017
  • This study investigates the relationship between the damage patterns and structural performance levels of a multi-strand 7-wire strand that is used as an important member of stay cables. Stay cables are continuously damaged after completion, and corrosion is the main cause. However, it is difficult to check the damage pattern inside the cable due to its structural characteristics, and it is difficult to evaluate the degradation level of the damage quantitatively. This study derives the relationship between the damage pattern and the performance level of the stranded wire by comparing results and analyzing them through an indoor experiment and finite element analysis. In order to simulate the damage of a 7-wire strand, artificial damage was applied by mechanical precision machining to perform a performance evaluation. The results of the analysis show that regardless of the damage size of the strand, the structural performance deteriorated immediately after the damage. It was experimentally and analytically deduced that the type and amount of damage should be considered as a parameter for evaluating the performance level of the strand. This information can be used for the safety management of a cable stayed bridge by constructing a database according to the pattern and amount of damage.

A Maximum Mechanism of Data Transfer Rate using Parallel Transmission Technology on High Performance Network (고성능 네트워크에서 병렬 전송 기술을 이용한 전송률 극대화 메커니즘)

  • Kim, Young-Shin;Huh, Eui-Nam
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.9
    • /
    • pp.425-434
    • /
    • 2007
  • Even though Internet backbone speeds have increased in the last few years due to projects like Internet 2 and NGI, many high performance distributed applications are able to achieve only a small fraction of the available bandwidth. The cause of such problem is due to a character of TCP/IP. The primary goal of this protocol is reliable data transmission. Therefore high speed data transmission didn't be considered when TCP/IP is designed. Hence several researchers have been studied in order to solve the problem of TCP/IP. One of these research results, parallel transfer technique, solves this problem to use parallel TCP connections on application level. Additionally, this technique is compatibility. Recently, these researchers have been studied a mechanism to decide the number of parallel TCP connections. However, some researchers reported the number of parallel TCP connection base on only empirical results. Although hardware performance of host affects transmission rate, the hardware performance didn't be considered in their works. Hence, we collect all data related to transmission rate, such as hardware state information (cpu utilization, interrupt, context switch). Then, we analyzed collected data. And, we suggest a new mechanism determining number of parallel TCP connections for maximization of performance based on our analysis.