• Title/Summary/Keyword: 안전한 활용

Search Result 8,329, Processing Time 0.032 seconds

Development of Safety Management Information System for Gas Industries Using Database (데이터베이스를 이용한 가스산업시설의 안전관리정보시스템 구축)

  • Um Sung-In;Kim Sung-Bin;Kim Yun-Hwa;Baek Jong-Bae;Kim In-Won;Ko Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.48-54
    • /
    • 1998
  • In this study a computerized prototype system was developed with Safety Management Information System(SMIS version 1.0) as a main system and database as subsystems to handle information. Safety management information consists of management aspects and technical elements, but SMIS consists of 4 modules of technical elements to interrelate safety technologies closely. SMIS enables gas industries to manage process safety information effectively and to evaluate hazards. The results from SMIS can be used to the operation manual and the emergency plan. Data base consists of 3 modules of accident data, material data, and equipment data to support SMIS. Also, the case study results proved the usefulness of SMIS for searching and accumulating process safety data. Especially, MIS which has the database suggests a formal structure for scattered raw safety data in gas industries and brings reduction of man power and time.

  • PDF

A Study of Model-Based Aircraft Safety Assessment (모델기반 항공기 안전성평가에 관한 연구)

  • Kim, Ju-young;Lee, Dong-Min;Lee, Byoung-Gil;Gil, Gi-Nam;Kim, Kyung-Nam;Na, Jong-Whoa
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.24-32
    • /
    • 2021
  • Personal Air Vehicle (PAV), Cargo UAS (Cargo UAS), and existing manned and unmanned aircraft are key vehicles for urban air mobility (UAM), and should demonstrate compatibility for the design of aircraft systems. The safety assessment required by for certification to ensure safety and reliability should be systematically performed throughout the entire cycle from the beginning of the aircraft development process. However, with the increasing complexity of safety critical aviation systems and the application of state-of-the-art systems, conventional experience-based and procedural-based safety evaluation methods make ir difficult to objectively assess safety requirements and system safety. Therefore, Model-Based Safety Assessment (MBSA) using modeling and simulation techniques is actively being studied at domestic and foreign countries to address these problems. In this paper, we propose a Model-Based Safety Evaluation framework utilizing modeling and simulation-based integrated flight simulators. Our case studies on the Traffic Collision Availability System (TCAS) and Wheel Brake System (WBS) confirmed that they are practical for future safety assessments.

Influence of Recognition for Health Care Accreditation on Patient Safety Managing Activities of Nursing Staffs in Geriatric Hospital (의료기관 인증제에 대한 인식이 요양병원 간호인력의 환자안전관리 활동에 미치는 영향)

  • Kweon, Myeung Sook;Jo, Hyun Sook
    • 한국노년학
    • /
    • v.38 no.1
    • /
    • pp.15-26
    • /
    • 2018
  • This study was aimed to investigate the influencing level of nursing staff's recognition for the health care accreditation on patient safety managing activities by identifying the relationship between them and other factors affecting on patient safety managing activities. Subjects of this study were 182 nursing staffs working in six geriatric hospitals accredited for health care in Seoul metropolitan area. Data was collected during April, 2016 by structured questionnaires. And SPSS/WIN 15.0 program with t-test, ANOVA, Pearson's correlation, and stepwise multiple regression analysis were employed for analyzing them. 96.2% of the subjects have recognized the accreditation and 31.8% of them have acknowledge it in detail. The average level of recognition for the health care accreditation and patient safety managing activity were 3.60 and 4.39 point (max.5.0) respectively. Correlation between them was positive(r=.339, p<.001). Significant factors influencing patient safety managing activity were internal service quality promotion (t=5.292, p<.001) and academic background (t=2.836, p=.005). Education program or information on health care accreditation system, and action plans for promoting internal service quality for the nursing staffs including job standardization of the jobs are recommended for the better patient safety managing activities.

Causal Loop Diagram for the Relation Between Degree of Field Safety Management and Productivity Based on Effectiveness Metrics : Focusing on Plumbing work in Mega Project (작업효율 지표 기반 안전관리행위 - 생산성 인과 모델 구축 - 메가 프로젝트 배관공사 중심으로 -)

  • Chae, Yeon;Park, Moonseo;Cho, Jongwoo;Lee, Jinsol;Joo, Seonu;Hong, Yeongmin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.2
    • /
    • pp.12-20
    • /
    • 2021
  • Unsafe working environments slow down working speed in that it takes a lot of time to respond in case of an accident, greatly reducing the productivity of construction work. Therefore, proper safety management that does not impede the productivity of construction works is a very important factor for successful construction project. However especially in mega project, the mutual effects of safety management and productivity are complex. Therefore, this study establishes a causal model between safety management and productivity influencing factors based on effectiveness metrics, and analyzes the effect of increased site congestion due to excessive personnel input, irregular safety measures and inefficient change of work schedules. The result of this study, is expected to contribute to enhancing the competitiveness of the construction industry as the basis for establishing a safety management plan that can secure appropriate productivity.

Basic Research for the Development of Collision Risk Model of Passing Vessels at an Anchorage (Safety Domain) (정박지 통항선박의 충돌위험 모델 개발을 위한 기초연구 - 정박지 통항선박의 안전 -)

  • Lee, Jin-Suk;Kwon, Yumin;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • The purpose of this study is to obtain a safe area for a passing vessel between anchored vessels by developing a model to predict the collision risk, frequent collisions occur between the anchored vessel and the passing vessel through the anchorage. For this, this study selected the southern anchorage of Busan port, which is the largest harbor in Korea, as the target area and extracted and analyzed VTS (Vessel Traffic Service) data during the period in which anchored vessels were the most waited. The ratio of D/L for each bearing was obtained to determine the safe distance (D) passes based on the length (L) of the passing vessel between anchored vessels. Based on the average domain of the D/L ratio distribution, the percentage of anchored vessels within the scope of the pre-studied ship's domain was analyzed to obtain a domain reflecting the degree of risk of VTSOs. Further research will evaluate and analyze the collision risk of a passing vessel using Domain-watch, the minimum safe distance between anchored vessels, and the safe domain of a passing vessel through anchorage, to develop a model for VTS to manage anchorages more efficiently and safely.

Review of International Cases for Managing Input Data in Safety Assessment for High-Level Radioactive Waste Deep Disposal Facilities (고준위방사성폐기물 심층처분시설 안전성평가 입력자료 관리를 위한 해외사례 분석)

  • Mi Kyung Kang;Hana Park;Sunju Park;Hae Sik Jeong;Woon Sang Yoon;Jeonghwan Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.887-897
    • /
    • 2023
  • Leading waste disposal countries, such as Sweden, Switzerland, and the United Kingdom, conduct safety assessments across all stages of High-Level Radioactive Waste Deep Geological Disposal Facilities-from planning and site selection to construction, operation, closure, and post-closure management. As safety assessments are repeatedly performed at each stage, generating vast amounts of diverse data over extended periods, it is essential to construct a database for safety assessment and establish a data management system. In this study, the safety assessment data management systems of leading countries, were analyzed, categorizing them into 1) input and reference data for safety assessments, 2) guidelines for data management, 3) organizational structures for data management, and 4) computer systems for data management. While each country exhibited differences in specific aspects, commonalities included the classification of safety assessment input data based on disposal system components, the establishment of organizations to supply, use, and manage this data, and the implementation of quality management systems guided by instructions and manuals. These cases highlight the importance of data management systems and document management systems for securing the safety and enhancing the reliability of High-Level Radioactive Waste Disposal Facilities. To achieve this, the classification of input data that can be flexibly and effectively utilized, ensuring the consistency and traceability of input data, and establishing a quality management system for input data and document management are necessary.

TNT Explosion Demonstration and Computational Fluid Dynamics for Safety Verification of Protection Wall in Hydrogen Refueling Station (수소충전소 방호벽 안전성 검증을 위한 TNT 폭발실증 및 전산유동 해석)

  • Yun-Young Yang;Jae-Geun Jo;Woo-Il Park;Hyon Bin Na
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.102-109
    • /
    • 2023
  • In realizing a hydrogen society, it is important to secure the safety of the hydrogen refueling station, which is the facility where consumers can easily meet hydrogen. The hydrogen refueling station consists of compressed gas facilities that store high-pressure hydrogen, and there is a risk that the high-pressure compressed gas facility will rupture due to a fire explosion due to hydrogen leakage in the facility or the influence of surrounding fires. Accordingly, the Korea Gas Safety Corporation is making every effort to find out risk factors from the installation stage, reflect them in the design, and secure safety through legal inspection. In this study, a TNT explosion demonstration test using a protection wall was conducted to confirm the safety effect of the protection wall installed at the hydrogen refueling station, and the empirical test results were compared and verified using FLACS-CFD, a CFD program. As a result of the empirical test and CFD analysis, it was confirmed that the effect of reducing the explosion over-pressure at the rear end of the protection wall decreased from 50% to up to 90% depending on the location, but the effect decreased when it exceeded a certain distance. The results of the empirical test and computer analysis for verifying the safety of the protection wall will be used in proposals for optimizing the protection wall standards in the future.

Simplistic Beam Theory-based Structural Safety Evaluation Method for Block Structure on the A-Carrier (블록 구조물 적치용 지지대의 빔 이론 기반 구조 안전성 평가법)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.358-364
    • /
    • 2024
  • Type A carrier structures that support blocks or equipment gradually deform over time with load changes, reducing the area in contact with the block and changing the load pattern from distributed to concentrated during construction work in the shipyard. This phenomenon has the potential to misrepresent actual service loads. In particular, A carriers are often used by small manufacturers, who often do not have specialized engineering capabilities, necessitating the development of a method for easy calculation of carrier safe working load. This study proposes a quick evaluation method for the long-term safe working load of Type A carriers, to predict the plastic deformation and safety issues resulting from changes in load distribution. Based on the results of finite element analysis (beam and shell modeling) of the centralized load, beam-theory was modified to propose a method for determining the distributed load conditions of the A-carrier. In beam modeling, the theoretical value was multiplied by a correction factor of 0.73 for concentrated loads and 0.69 for distributed loads to obtain a safe working load. For shell modeling, a correction factor of 0.75 can be used for concentrated loads and 0.69 for distributed loads. This study can serve as a basis for improving the safety of shipbuilding, enabling quick and effective decisions for determining safe working loads in actual working environments.

A Software Vulnerability Analysis System using Learning for Source Code Weakness History (소스코드의 취약점 이력 학습을 이용한 소프트웨어 보안 취약점 분석 시스템)

  • Lee, Kwang-Hyoung;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.46-52
    • /
    • 2017
  • Along with the expansion of areas in which ICT and Internet of Things (IoT) devices are utilized, open source software has recently expanded its scope of applications to include computers, smart phones, and IoT devices. Hence, as the scope of open source software applications has varied, there have been increasing malicious attempts to attack the weaknesses of open source software. In order to address this issue, various secure coding programs have been developed. Nevertheless, numerous vulnerabilities are still left unhandled. This paper provides some methods to handle newly raised weaknesses based on the analysis of histories and patterns of previous open source vulnerabilities. Through this study, we have designed a weaknesses analysis system that utilizes weakness histories and pattern learning, and we tested the performance of the system by implementing a prototype model. For five vulnerability categories, the average vulnerability detection time was shortened by about 1.61 sec, and the average detection accuracy was improved by 44%. This paper can provide help for researchers studying the areas of weaknesses analysis and for developers utilizing secure coding for weaknesses analysis.

Collection and Utilization of Unstructured Environmental Disaster by Using Disaster Information Standardization (재난정보 표준화를 통한 환경 재난정보 수집 및 활용)

  • Lee, Dong Seop;Kim, Byung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.236-242
    • /
    • 2019
  • In this study, we developed the system that can collect and store environmental disaster data into the database and use it for environmental disaster management by converting structured and unstructured documents such as images into electronic documents. In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. Environmental disaster information is one of important elements of disaster cycle. Environment disaster information management refers to the act of managing and processing electronic data about disaster cycle. However, these information are mainly managed in the structured and unstructured form of reports. It is necessary to manage unstructured data for disaster information. In this paper, the intelligent generation approach is used to convert handout into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored into the disaster database system. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle. The expected effect of this research will be able to apply it to smart environmental disaster management and decision making by combining artificial intelligence technologies and historical big data.