• Title/Summary/Keyword: 안전한 활용

Search Result 8,329, Processing Time 0.035 seconds

A Study on Weight-Based Route Inference Using Traffic Data (항적 데이터를 활용한 가중치 기반 항로 추론에 대한 연구)

  • Seung Sim;Hyun-Jin Kim;Young-Soo Min;Jun-Rae Cho;Jeong-Hun Woo;Ho-June Seok;Deuk-Jae Cho;Jong-Hwa Baek;Jaeyong Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.208-209
    • /
    • 2023
  • Intelligent maritime traffic information service for maritime traffic safety operates a service that provides safe and efficient optimal safety routes considering information such as water depth, maritime safety law, weather information, and fuel consumption. However, from a service user's point of view, they prefer a route that suits their personal navigation experience and style, such as unnecessary detours and conservative safety distances for maritime objects. In this study, the optimal safety route can be extracted based on the experience of service users without reflecting the separate maritime environment by adjusting the weight of the trunk line for the area where the ship frequently navigates with the ship's track data collected through LTE-M model was studied.

  • PDF

Analysis of Improvement Targets for Public Safety Threats in the Maritime Area Around the Launch Site (발사장 주변 해상의 공공안전 위협요인에 대한 개선 대상 분석)

  • Ahn-Tae Shin;Hun-Soo Byun
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.153-162
    • /
    • 2024
  • Securing safety in the maritime danger zone around the launch site before a launch is a fundamental requirement. If maritime safety is not ensured, the launch is halted or postponed. However, challenges have arisen in the process of securing public safety at sea due to factors such as the increasing population engaged in water leisure activities. These challenges include unauthorized entry of vessels into controlled areas, unauthorized access by water leisure activity participants, and non-compliance with regulations. In this paper, we employed the Delphi/Analytic Hierarchy Process to survey 22 experts, including professionals in launch vehicle development and launch site operation, to identify 10 factors posing threats to maritime public safety. Additionally, we identified five issues that need improvement for ensuring maritime safety. This study verified the consistency of expert opinions and conducted an analysis of importance and prioritization, objectively confirming the necessity for amendments to relevant laws or the enactment of new laws concerning the establishment and control of danger zones around launch sites.

The Effect of Flight Stress on Job Satisfaction and Safety Culture: Moderator Effect by Airlines and Rank (비행 스트레스가 직무 만족도와 안전문화에 미치는 영향 : 항공사 및 직급별 조절된 매개효과)

  • Byeong-Seon Yoo;Kangmin Ko
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.44-50
    • /
    • 2024
  • This study analyzed the effect of flight stress on job satisfaction and safety culture on 193 domestic civil airline pilots. As a result of the analysis, flight stress had a negative effect on job satisfaction, and pilots with low job satisfaction had a low awareness of safety culture. In particular, there was a difference in the effect of flight stress on job satisfaction and safety culture according to the airlines and rank of pilots. This suggests the necessity of developing customized stress management programs for each airline and pilot position. The study emphasizes the importance of managing pilots' stress and improving job satisfaction to reinforce the safety culture of the aviation industry. In addition, airlines should develop strategies to strengthen safety culture by reducing pilot stress and increasing job satisfaction. The result of this study is to be used as useful basic data for finding ways to manage pilots' stress and strengthen safety culture in the aviation industry.

Hazardous Material Process Risk Evaluation Using HAZOP and Bow-tie (HAZOP 및 BOW-TIE를 이용한 위험물질 취급공정의 위험성평가)

  • Min-Seo Nam;Byung-Tae Yoo
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.35-43
    • /
    • 2024
  • With continuous advancements in industry, science, and technology, there is a steady increase in the number and utilization of new chemicals. The growing societal emphasis on chemical safety management is paralleled by an increasing public demand for robust safety measures. While various ministries at the government level oversee the safety management of chemical substances, the occurrence of accidents related to chemical substances remains frequent each year due to problems such as aging facilities and careless handling. Upon analyzing domestic chemical accident cases, incidents occurred predominantly in the sequence of leakage, explosion, fire, and others. The main causes of these accidents were examined, revealing facility defects and non-compliance with safety management as the primary contributing factors. In this study, Hazard and Operability Analysis (HAZOP) was employed to identify hazardous risk factors associated with the handling of hydrofluoric acid in workplaces, and a risk assessment was performed using Bow-Tie method. Based on the results of this study, it is expected to enhance safety management plans aimed at preventing chemical accidents in workplaces dealing with similar facilities. Ultimately, these insights contribute to the development of an advanced chemical safety management system, capable of proactively preventing potential chemical accidents.

Semi-quantitative Risk Assessment using Bow-tie Method for the Establishment of Safety Management System of Hydrogen Fuel Storage Facility in a Combined Cycle Power Plant (복합화력발전소 내 수소연료 저장설비의 안전관리 체계 구축을 위한 Bow-tie 기법을 활용한 반정량적 위험성 평가)

  • Hee Kyung Park;Si Woo Jung;Yoo Jeong Choi;Min Chul Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.75-86
    • /
    • 2024
  • Hydrogen has been selected as one of the key technologies for reducing CO2 emissions to achieve carbon neutrality by 2050. However, hydrogen safety issues should be fully guaranteed before the commercial and widespread utilization of hydrogen. Here, a bow-tie risk assessment is conducted for the hydrogen fuel supply system in a gas turbine power plant, which can be a mass consumption application of hydrogen. The bow-tie program is utilized for a qualitative risk assessment, allowing the analysis of the causes and consequences according to the stages of accidents. This study proposed an advanced bow-tie method, which includes the barrier criticality matrix and visualized maps of quantitative risk reduction. It is based on evaluating the importance of numerous barriers for the extent of their impact. In addition, it emphasizes the prioritization and concentrated management of high-importance barriers. The radar chart of a bow tie allows the visual comparison of risk levels before/after the application of barriers (safety measures). The risk reduction methods are semi-quantitatively analyzed utilizing the criticality matrix and radar chart, and risk factors from multiple aspects are derived. For establishing a secure hydrogen fuel storage system, the improvements suggested by the bow-tie risk assessment results, such as 'Ergonomic equipment design to prevent human error' and 'Emergency shutdown system,' will enhance the safety level. It attempts to contribute to the development and enhancement of an efficient safety management system by suggesting a method of calculating the importance of barriers based on the bow-tie risk assessment.

Research on Safety Measures for Design and Operation of Alkaline Water Electrolysis Facility (알칼라인 수전해 설비 설계 및 운영의 안전대책 연구)

  • Hyeon-Ki Kim;Doo-Hyoun Seo;Kwang-Won Rhie;Tae-Hun Kim;Seong-Chul Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • As interest in sustainable and eco-friendly energy increases due to various problems in the carbon economy, a hydrogen economy that utilizes hydrogen as a main energy source is emerging. Among the methods of producing hydrogen, the water electrolysis method based on renewable energy produces environmentally friendly green hydrogen because it produces hydrogen from water. The water electrolysis facility currently under development produces hydrogen by receiving electricity directly from renewable energy and uses KOH(potassium hydroxide) as an electrolyte. In this study, HAZOP(Hazard and Operability Study), a qualitative risk assessment, was conducted on alkaline water electrolysis facilities to find problems and risk factors in the design and operation of water electrolysis facilities. Risks related to oxygen and KOH, an electrolyte, were identified as major risks, and it is believed that the safety of facilities and workers can be secured based on emergency action plans and safe operation procedures.

An Investigation on the Characteristics of Local Factors of Safety of Rock Failure and Their Dependency on the Stress Paths (암석파괴 국부안전율의 특성과 응력경로 의존성 고찰)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2017
  • The factor of safety (FOS) is commonly used as an index to quantitatively state the degree of safety of various rock structures. Therefore it is important to understand the definition and characteristics of the adopted FOS because the calculated FOS may be different according to the definition of FOS even if it is estimated under the same stress condition. In this study, four local factors of safety based on maximum shear stress, maximum shear strength, stress invariants, and maximum principal stress were defined using the Mohr-Coulomb and Hoek-Brown failure criteria. Then, the variation characteristics of each FOS along five stress paths were investigated. It is shown that the local FOS based on the shear strength, which is widely used in the stability analysis of rock structures, results in a higher FOS value than those based on the maximum principal stress and the stress invariants. This result implies that the local FOS based on the maximum shear stress or the stress invariants is more necessary than the local FOS based on the shear strength when the conservative rock mechanics design is required. In addition, it is shown that the maximum principal stresses at failure may reveal a large difference depending on the stress path.

Model Integration of Systems Design and Safety Analysis Processes for Systematic Design of Safety-Critical Systems (안전중시 시스템의 체계적인 설계를 위한 시스템 설계 및 안전 분석 활동 모델의 통합)

  • Kim, Chang-Won;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.363-368
    • /
    • 2016
  • In safety-critical systems (SCS), failure may result in accidents with serious damage to human beings and property. As systems become more complex and automated, the goal of acquiring safety has attracted increasing attention lately in the defense industry, as well as the rail, automotive, and aerospace industries, among others. As such, the Department of Defense and international organizations have established appropriate standards and guidelines for systems safety and design. To this end, there has been research on the processes, methods, and associated tools for safety design. However, those results do not seem to sufficiently utilize system architectural information. The purpose of this paper is to provide a more systematic approach to SCS design. To better identify potential hazards, design information at each level of system hierarchy is exploited. Based on the results, an integrated process model was developed by combining the processes of system design and safety analysis. As a case study, the resultant integrated process model was applied to the safety design of an automobile system, which shows useful results for safety evaluation.

The Development of a Safety Environment Survey Framework Considering Regional Characteristics (지역 특성을 고려한 안전환경 조사 프레임워크 개발)

  • Chang, Eunmi;Kim, Eun Kyung
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.2
    • /
    • pp.364-378
    • /
    • 2015
  • As safety Issue becomes one of the hot topics, practical researches and feasible policies are in needs not only for central government but also local officers. The previous studies focused on organizational or institutional approaches and on functional efficiencies, especially how to integrate disaster data at every stage of disaster from preparedness to recovery. Physical and social environments differ from among others, top-down disaster management plan cannot work, and therefore more practical statistics and survey is required to prepare the safety management plan for local government. We aim to suggest a safety environment survey framework and to apply it to two guns (Muan and Goheung). We considered main factors of the framework based on legal requirement for safety index and four stages of disaster progress. Two guns are located in remote area and have a population who are weak to disaster. Action items were drawn from the survey and analysis from the framework respectively. We expect this framework to be expanded to include more urbanized and complex areas.

  • PDF

A Study on Road Safety Evaluation Method for Improvement Project of Two-Lane Road (2차로 시설개량 사업의 도로 안전성 평가방법 연구)

  • Shin, Chul-Ho;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.105-114
    • /
    • 2019
  • Recently, the paradigm of road policy has been focused on user safety. Recently, the number of road facility improvement project has been continuously increased but the economic feasibility (B/C ratio) is insufficient. Therefore, it is necessary to select a reasonable road improvement project through accurate and objective analysis of the road safety evaluation. In this study, to develop a new road safety evaluation method, data were collected based on the current road safety evaluation method for 75 routes including national roads and provincial ones. Based on the collected data, problems were analyzed and utilized as the basic factors of the new road safety evaluation method. Therefore, in this study, traffic accidents were reflected as a general evaluation item by weighing to solve these problems, and the evaluation items were added from experiences and ideas of the local public officials. For each evaluation item, a reasonable weight was determined through AHP (Analytic Hierarchy Process) questionnaire evaluation with highway experts. In addition, the safety index was determined based on the evaluation criteria for each evaluation item. The criteria for evaluating the danger zone are determined by the overall safety index. Finally, the criteria for selection of road improvement projects based on the overall risk level were derived.