• Title/Summary/Keyword: 안전위도(眼電位圖)

Search Result 4, Processing Time 0.023 seconds

A New Design Method of Machine Control Interface by Using Bio-signals (생체신호를 이용한 새로운 형태의 기계 제어 인터페이스 구현방법)

  • Jin Kyung-Soo;Park Byoung-Woo;Byeon Jong-Gil
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.19-26
    • /
    • 2005
  • This paper introduces a new design method of realizing the machine control interface by using bio-signals(EEG/EOG). This method can be further expanded to be applied to the computer system responding to EEG or EOG signals and the general bio-feedback system. For this reason, we made the remotely controlled toy system controlled by the EEG spectrums, their combination indexes, and EOG parameters. And the headset that has bio-signal processing modules built-in offers convenience for users, and this make much more advanced system than any other existing BCI and BMI system.

  • PDF

Optimizing neural network for artifact reduction in electroencephalogram diagnostic system (뇌파진단 시스템에서 artifact 제거를 위한 신경망 최적화)

  • Jeon, Su-Yeol;Cho, Sang-Heom;Ahn, Chang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1981-1982
    • /
    • 2008
  • 뇌파신호 측정 시에는 환자의 움직임 등으로 artifact가 발생하게 된다. 따라서 정확한 진단에는 이와 같은 artifact를 제거하는 것이 중요하다. 본 논문에서는 뇌파신호에서 발생할 수 있는 artifact 중 EOG(Electrooculogram: 안전위도)를 검출하고 제거하기 위한 방법으로 EOG 필터링(EOG filtering)을 제안하며, 나머지 근전도를 제거하기 위해 신경망(neural network)를 사용한다. 이때 입력신호의 특징이 신경망에 보다 잘 적용될 수 있도록 비선형 양자화기를 적응적으로 동작시키는 방법을 제안한다. 제안하는 방법을 통해 뇌파신호의 artifact를 효과적으로 제거할 수 있다.

  • PDF

The estimation of 3D image using E.O.G (안전위도(EOG)에 의한 입체영상의 평가)

  • Cho, Am
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.168-185
    • /
    • 1996
  • In this research, an investigation of the eye movement was performed when the objects perceived by the eye are three-dimensional objects, two dimensional images, and three dimensional image. This investigation was done by observing the EOG(Electro-oculogram) waves which were achived from experiments. The observed waves were categorized into several groups. Differences among the waves were analyzed for each object and image perceived by the eye. In order to obtain waves to be analyzed, two kinds of experiments were performed. In each experiments, the saccadic eye movement and the smooth pusuit eye movement was considered as an independent variable individually. Waves obtained from the experiments were categorized into 4 types(Wave1, Wave2, Wave3, Wave4) depending on their characteristics. Unlike from the other images, three dimensional image was revealed as a key factor for the active movement of the eye. Futhermore, a unique eye movement was observed in the case of three dimensional image where the focus of the eye was achived in three steps.

  • PDF

The estimation of 3D image using EOG (안전위도(EOG)에 의한 입체영상의 평가)

  • Cho, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • In this research, and investigation of the eye movement was performend when the objects perceived by the eye are three-dimensional objects, two dimensional images, and trhee dimensional images. This investigation was done by observing the EQG(Electro- oculogram) waves which were obtained from experiments. The observed waves were categorized into several groups. Differences among the waves were analyzed for each object and image perceived by the eye. In order to obtain waves for analysis, two kinds of experiments were performen. In each experiment, the saccadic eye movement and the smooth pursuit eye movement were considered as an independent variables. Waves obtained from the experiments were categorized into 4 types (Wave-1, Wave-2, Wave-3, Wave-4) depending on their characteristics. Unlike the other images, three dimensional image was revealed as a key factor for the active movement of the eye. Futhermore, a unique eye movement was observed in the case of three dimensional images where the focus of the eye was achieved through three steps.

  • PDF