• Title/Summary/Keyword: 안경렌즈 재료

Search Result 15, Processing Time 0.028 seconds

Development of Spectacles with Injection Molding (사출성형에 의한 안경 개발)

  • 한두희;김복현
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.298-299
    • /
    • 2001
  • 안경렌즈는 유리를 연마하여 제작하거나 단량체를 세라믹 금형에 넣어 캐스팅공법으로 플라스틱 렌즈를 만드는 것이 일반적인 방법이었다. 한편 사출성형에 의한 렌즈 및 안경의 제작은 광학적으로 우수한 재료 및 금형을 개발하지 못하여 국내에서는 시도조차 못하는 형편이다. 구미나 유럽의 일부 국가는 PMMA 및 PC를 이용하여 안경 및 안경렌즈를 개발하고 있으며, 이는 공정을 대폭 줄이기 때문에 대량 생산 및 원가 절감을 이룩할 수 있다. 본 연구에서는 PMMA 및 PC를 이용하여 그동안 성형할 때에 가장 문제가 되었던 오목 렌즈를 제작하기 위한 근본적인 금형 설계의 문제점 해결과 이를 이용한 일체형 안경과 고강도 렌즈의 제작을 고찰하였다.

Materials for Spectacle lens cutting with Glass phase (유리상 첨가한 안경렌즈 절삭용 재료)

  • Lee, Young-II
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.145-148
    • /
    • 2001
  • SiC composites were developed by incorporating glass phase into SiC, in the light of improving mechanical properties of material for spectacle lens cutting. Specimens for spectacle lens cutting with glass phase as sintering additives have been fabricated by hot-pressing at $1810^{\circ}C$ for 2 hr under a pressure of 25 MPa. The fracture toughness and hardness of hot-pressed specimens were characterized and compared with previous works. Typical hardness and fracture toughness of materials for spectacle lens cutting were 12 GPa and $5.1MPa{\cdot}m^{1/2}$ respectively.

  • PDF

Effect of TiC amount on Fracture Toughness of materials for glasses lens cutting (TiC함량이 안경렌즈 절삭용 재료 파괴인성에 미치는 영향)

  • Lee, Young Il
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.207-210
    • /
    • 2000
  • The SiC-TiC composites materials for glasses lens cutting were fabricated by hot-pressing and annealing. The amount of TiC was 0, 10, 20, 30wt% in the mixture of ${\beta}-SiC$. The microstructure of materials for glasses lens cutting was very dependent on the TiC amount. The introduction of larger amount of TiC improved fracture toughness, optical microscope and XRD analysis of the surface of samples were carried out. An in situ-toughened microstructure, consisted of distributed elongated SiC, matrix like TiC grains was developed by using ${\beta}-SiC$. Typical hardness and fracture toughness of materials for spectacle lens cutting were 14.9 GPa and $5.7MPa{\cdot}m^{1/2}$, respectively.

  • PDF

Effect of AIN on properties of materials for spectacle lens cutting (AIN첨가가 안경렌즈 절삭용 재료특성에 미치는 영향)

  • Lee, Young ll
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.1
    • /
    • pp.25-27
    • /
    • 2002
  • To improve the properties of materials for spectacle lens cutting. AIN was included as a sintering additive. The amount of AIN was 0, 1, 3, 5 wt% and materials for spectacle lens cutting were fabricated by hot-pressing at $1830^{\circ}C$ for 2h. Microstructure was consisted of equiaxed SiC and elongated TIC. Typical fracture toughness and hardness of materials for spectacle lens cutting with AIN $4.8MPa{\cdot}m^{1/2}$ and 15.3 GPa, respectively.

  • PDF

Fabrication of spectacle lens cutting materials (렌즈 절삭공구 재료의 제조)

  • Lee, Young-II
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.111-114
    • /
    • 2001
  • This paper presents the influence of the additive composition on flexural strength and hardness of SiC-TiC composites materials for spectacle lens cutting materials. The materials were hot-pressed at $1800^{\circ}C$ and subsequently annealed at $1910^{\circ}C$ for 3h. The heating rate was $15^{\circ}C/min$ and the cooling rate about $25^{\circ}C/min$ in from the sintering temperature to $1300^{\circ}C$. The growth of particles of spectacle lens cutting materials was analysed by SEM and crystalline phases were discussed by x-ray diffractometry. Typical fracture toughness and hardness of materials for spectacle lens cutting were $6.1MPa{\cdot}m^{1/2}$ and 14.9 GPa, respectively.

  • PDF

Comparison of Properties of Polymer Based Glass Lenses by Chemical Etching Reaction (고분자 안경 렌즈의 재질별 화학적 식각 반응성 비교)

  • Lee, Junghwa;Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • Purpose: To study changes in coating and lens materials after chemically etched different polymer based glass lenses in short-term and ambient condition using hydrofluoric acid. Methods: Vinyl ester polymer (Lens A) and thiourethane polymer (Lens B), both dyed in gray 70%, were etched in hydrofluoric acid solution for 5, 10, or 15 min. The mechanical properties, degrees of damages in hard coating, anti-reflection coating, and other coatings, rates of refractive index and light transmission of both polymer types were evaluated. Results: Rates of refractive index of both lens types were not changed significantly after chemical etching. However, anti-reflection coatings and hard coatings were removed and lens surfaces were damaged. As a results, UV light transmission of lenses increased and mechanical properties decreased. Chemical etching notably changed various properties of thiourethane polymer materials. Conclusions: Depending on types of polymer materials, chemical reactions by hydrofluoric acid were dissimilar. Thus, various properties of les materials were altered differently.

Effect of CaO on Mechanical Properties of SiC materials for spectacle lens cutting (CaO첨가가 렌즈 절삭용 실리콘카바이드재료의 기계적 특성에 미치는 영향)

  • Lee, Young-Il;Shin, Dong-Sung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.2
    • /
    • pp.19-23
    • /
    • 2007
  • An investigation of the effects of CaO on microstructure and properties of SiC materials for spectacle lens cutting was described. Four materials with different composition have been fabricated by hot-pressing at $1,880^{\circ}C$ for 4h using CaO. SEM analysis and XRD of the surface of samples were carried out. Typical fracture toughness of materials for spectacle lens cutting was $5.4MPa{\cdot}m^{1/2}$. Also, The hardness of materials for spectacle lens cutting was relatively dependent on the density.

  • PDF

Synthesis of Ultra High Refractive Index Monomer for Plastic Optical Lens and Its Ophthalmic Lens Preparation (플라스틱 안경렌즈용 초고굴절 모노머 합성 및 이를 이용한 안경렌즈 제조)

  • Jang, Dong Gyu;Kim, Jong Hyo;Lee, Soo Min;Roh, Soo Gyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • Purpose: Plastic optical monomer materials having ultra high refractive index have an income of the whole quantity from advanced nations to domestic companies which are related to plastic optical lens. It is necessary to develop novel plastic optical lens materials in order to overcome a FTA provision and revitalize a stagnating optical lens industry in the interior optical lens industries. The new plastic optical lens materials against the substitution effect of income should be gradually demanded. This work will be synthesized novel super high refractive monomer resin materials of urethane lens series and studied the properties of optical lens using it. Methods: ETS-4 (2-(2-mercaptoethylthio)-3-{2-[3-mercapto-2-(2-mercaptoethylthio)propyl thio]ethylthio}propane -1-thiol), which is optical lens monomer resin having super high refractive index, was synthesized and identified its structure and property by elemental analysis, EI-MS, TGA, FT-IR spectroscopy, $^1H$ and $^{13}C$ NMR spectroscopies. After mixing evenly from mixed monomer resin and diisocyanate series, it was casting in glass mold. After thermal curing, the obtained optical lenses were measured and compared with the refractive index and Abbe number for studies of their optical properties. Results: We have synthesized the novel ultra high refractive index monomer resin, ETS-4, and have identified its structure and property by elemental analysis, EI-MS, TGA, FT-IR spectroscopy, $^1H$ and $^{13}C$ NMR spectroscopies. The existence of three isomers for EST-4 was identified by $^{13}C$ NMR spectroscopy. The refractive index ($N_d$ at $25^{\circ}C$) of monomer resin in liquid state obtained from the Abbe refractometer was 1.647. The refractive indexes of raw plastic optical lenses prepared from the mixed ETS-4 monomer and diisocyanate series were in the range of 1.656~1.680. Conclusions: Novel super high refractive index plastic optical lens monomer was synthesized and analysed, the optical lenses prepared using it were colorless transparency and excellent properties. It is of utility for the industrialization.

  • PDF

Optical Evaluation of MR8 Material spectacle Lens with a New Method for the Analysis of Blue Light (새로운 청광 분석법을 적용한 MR8 안경재료의 광학적 시험 평가)

  • Kim, Ha-Rim;Jeong, Ju-Hyun
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.413-420
    • /
    • 2018
  • Purpose : We present a novel method for the analysis of blue light applied by the analysis method of David L. with optical experiment and blue light by measuring the transmittance by dividing it by the refractive power in the spectacle lens made by MR8. Methods : The lenses of -8.00D, -7.00D, -6.00D, -5.00D, -4.00D, -3.00D, and 0.00D manufactured by MR8 being sold in the market, were selected. The transmittance was measured at the intervals of 5 nm from 200 to 1000 nm with UV-VIS Spectrophotometers (SolidSpec 3700), and they were in range of the blue light (380 to 500 nm) analyzed by a David L.'s analysis method. Results : All of the MR8 lenses selected for this study almost completely blocked at the UV range. A lens of -8.00D was measured as the lowest transmittance of 59.56% in the blue light area and low values were measured at the blue areas 1 and 2 according to the analysis of David L.In the infrared ray area, the transmittance of all lenses gradually decreased. The average value of the luminous transmittance was 23.67% ~ 26.33% and then gradually decreased from -4.00D. Conclusion : Applying the analysis of David L., a minimum of 41.28% and a maximum of 46.60% were measured at the blue light 1 area and a minimum of 87.30% and a maximum of 97.55% were measured at the blue light 2 area. A minimum of 86.83% and a maximum of 96.55% were measured at the blue light 3 area, and the average was 94%. The luminous transmittance of the -3.00D lens was 26.33%, which was the highest, and that -8.00D was 23.67%, which was the lowest.

Thermally Curable Organic-inorganic Hybrid Coatings on Ophthalmic Lenses by the Sol-Gel Method (졸-겔법에 의한 안경렌즈의 열경화형 유-무기 하이브리드 코팅)

  • Yu, Dong-Sik;Lee, Ji-Ho;Do, Young-Woong;Park, Seong-Ae;Ha, Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.587-592
    • /
    • 2006
  • 코팅은 플라스틱의 표면의 물성과 렌즈의 광학적 성능을 높이기 위해 필요하다. Allyl diglycol carbonate계열 렌즈 표면의 물성과 광학적 성능을 개선하기 위하여 3-glycidoxypropyltrimethoxysilane(GPTS), methyltrimethoxysilane(MTMS) 및 tetraethyl orthosilicate(TEOS)의 몰 비를 변화시켜 유-무기 하이브리드 재료로 사용하였다. Sol-gel 공정에 의한 flow코팅하여, $140^{\circ}C$에서 4시간 경화하였다. 코팅 렌즈는 투과율, 부착력, 연필경도, 내마모성, 내온수성 및 내약품성을 평가하였고 GPTS, MTMS 및 TEOS의 몰비가 각각 1: 1: 2일 때 가장 우수한 것으로 나타났다.

  • PDF