본 논문은 안드로이드 플랫폼에서 악성 어플리케이션을 탐지하기 위한 연구로, 안드로이드 악성 어플리케이션에 대한 위협과 행위 분석에 대한 연구를 바탕으로 머신러닝을 적용한 악성 어플리케이션 탐지를 수행하였다. 안드로이드의 행위 분석은 동적 분석도구를 통해 수행할 수 있으며, 이를 통해 어플리케이션에 대한 API Calls, Runtime Log, System Resource, Network 등의 정보를 추출할 수 있다. 이 연구에서는 행위 분석을 통한 특징 추출을 머신러닝에 적용하기 위해 특징에 대한 속성을 변환하고, 전체 특징에 대한 머신러닝 적용과 특징들의 연관분석을 통한 주성분분석으로 특징간의 상관분석으로 얻은 머신러닝 적용을 수행하였다, 이에 대한 결과로 악성 어플리케이션에 대한 머신러닝 분류 결과는 전체 특징을 사용한 분류 결과보다 주요 특징을 통한 정확도 결과가 약 1~4%정도 향상되었으며, SVM 분류기의 경우 10%이상의 좋은 결과를 얻을 수 있었다. 이 결과를 통해서 우리는 전체적인 특징을 이용하는 것보다, 주요 특징만을 통해 얻을 결과가 전체적인 분류 알고리즘에 더 좋은 결과를 얻을 수 있고, 데이터 세트에서 의미있는 특징을 선정하는 것이 중요하다고 파악하였다.
최근 모바일 사용자들이 증가하면서 모바일 어플리케이션 또한 계속적으로 증가하고 있다. 모바일 어플리케이션이 증가하면서 사용자들은 모바일 장치에 은행정보, 위치정보, 아이디, 패스워드 등의 민감한 정보들을 저장하고 있다. 따라서 최근에는 PC를 타겟으로 하는 악의적인 어플리케이션보다 모바일 장치를 타겟으로 하는 악의적인 어플리케이션들이 증가하고 있는 추세이다. 특히 안드로이드 플랫폼의 경우 오픈 플랫폼으로써 사용자들에게 악성 코드를 포함한 어플리케이션을 배포하기 유리한 환경을 가지고 있다. 본 논문에서는 안드로이드 환경에서 악성코드를 포함한 어플리케이션을 탐지하기 위해 선형 SVM(Support Vector Machine) 기계학습 분류기를 적용한 악성코드 탐지 시스템의 성능을 분석한다. 또한 모바일 악성코드의 탐지 성능 향상을 위한 feature를 제시하고, 의미있는 feature를 선정한다.
최근 사이버 공격은 지능적이고 지속적인 피싱사이트와 악성코드를 활용한 해킹 기법을 활용하는 사회공학적 공격이 증가하고 있다. 개인 보안이 중요해지는 만큼 웹 어플리케이션을 이용해 악성 URL 여부를 판별하는 방법과 솔루션이 요구되고 있다. 본 논문은 악성 URL를 탐지하는 정확도가 높은 기법들을 비교하여 각각의 특징과 한계를 알아가고자 한다. 웹 평판 DB 등 기반 URL 탐지 사이트와 특징을 활용한 분류알고리즘 모델과 비교하여 효율적인 URL 이상탐지 기법을 제안하고자 한다.
전 세계 스마트폰 이용자 중 약 70%가 안드로이드 운영체제 기반 스마트폰을 사용하고 있으며 이러한 안드로이드 플랫폼을 표적으로 한 악성 앱이 지속적으로 증가하고 있다. 구글은 증가하는 안드로이드 대상 악성코드에 대응하기 위해 'Google Play Protect'를 제공하여 악성 앱이 스마트폰에 설치되는 것을 방지하고 있으나, 아직도 많은 악성 앱들이 정상 앱처럼 위장하여 구글 플레이스토어에 등록되어 선량한 일반 사용자의 스마트폰을 위협하고 있다. 하지만 일반 사용자가 악성 앱을 점검하기에는 상당한 전문성이 필요하기에 대부분 사용자는 안티바이러스 프로그램에 의존하여 악성 앱을 탐지하고 있다. 이에 본 논문에서는 앱에서 쉽게 확인이 가능한 카테고리와 권한만을 활용하여 앱의 불필요한 악성 권한을 분류하고 분류한 권한을 통해 악성 앱을 쉽게 검출할 수 있는 방법을 제안한다. 제안된 방법은 '상용 악성 앱 검출 프로그램'과 미탐율·오탐율 측면에서 비교 분석하여 성능 수준을 제시하고 있다.
본 연구는 안드로이드 정적분석을 기반으로 추출된 AndroidManifest 권한 특징을 통해 악성코드를 탐지하고자 한다. 특징들은 AndroidManifest의 권한을 기반으로 분석에 대한 자원과 시간을 줄였다. 악성코드 탐지 모델은 1500개의 정상어플리케이션과 500개의 악성코드들을 학습한 SVM(support vector machine), NB(Naive Bayes), GBC(Gradient Boosting Classifier), Logistic Regression 모델로 구성하여 98%의 탐지율을 기록했다. 또한, 악성앱 패밀리 식별은 알고리즘 SVM과 GPC (Gaussian Process Classifier), GBC를 이용하여 multi-classifiers모델을 구현하였다. 학습된 패밀리 식별 머신러닝 모델은 악성코드패밀리를 92% 분류했다.
최근 침해사고에서 오피스 문서를 통한 공격 비중이 높아지고 있다. 오피스 문서 어플리케이션의 보안이 점차 강화되어왔음에도 불구하고 공격기술의 고도화, 사회공학 기법의 복합적 사용으로 현재도 오피스 문서를 통한 공격이 유효하다. 본 논문에서는 악성 OOXML(Office Open XML) 문서 탐지 방법과 탐지를 위한 프레임워크를 제안한다. 이를 위해 공격에 사용된 악성파일과 정상파일을 악성코드 저장소와 검색엔진에서 수집하였다. 수집한 파일들의 악성코드 유형을 분석하여 문서 내 악성 여부를 판단하는데 유의미한 의심 개체요소 6가지를 구분하였으며, 악성코드 유형별 개체요소 탐지 방법을 제안한다. 또한, 탐지 방법을 바탕으로 OOXML 문서 기반 악성코드 탐지 프레임워크를 구현하여 수집된 파일을 분류한 결과 악성 파일셋 중 98.45%에 대해 탐지함을 확인하였다.
스미싱(SMiShing) 공격은 문자메시지(SMS)를 이용하여 정보를 유출하거나 타인에게 피해를 주는 행위를 일컫는다. 본 논문에서는 공격자의 공격유형에 따라 스미싱을 "직접 정보 유출", "파밍/피싱 사이트 유도", "악성어플리케이션 다운로드 유도"로 분류하였고 스미싱 공격의 시나리오를 통해 스미싱 공격을 표현하였다. 그 후 스미싱 방지 기술 동향을 파악을 위한 기존의 대응 기법들을 조사를 하고 기존의 스미싱 탐지 기법인 URL 검사와 APK 파일 분석 기법을 접목시킨 스미싱 탐지 모델을 제안한다.
다수 사용자들이 이용하는 범용 어플리케이션에 존재하는 원격권한 획득이 가능한 취약점을 악용한 공격이 증가하고 있다. 특히, 플래시 플레이어는 브라우저, 오피스 등 다양한 플랫폼에서 사용이 되고 있어, 공격의 주요 대상이 되고 있으며 이를 대응하기 위한 연구가 진행되고 있다. 하지만 기존의 연구는 ActionScript에 대한 사전 분석된 특성을 이용해 탐지하기 때문에 신종/변종 탐지에 한계가 있다. 한계점의 개선을 위해 본 논문에서는 사전 분석된 특성을 사용하지 않고 플래시의 Tag빈도를 기계학습을 적용해 악성/정상 플래시에 대한 분류방법을 제안하며, 실험을 통해 제안한 방법이 기존 연구의 한계점을 극복하고 신종/변종 악성 플래시를 효과적으로 탐지 할 수 있음을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.