• 제목/요약/키워드: 악성 어플리케이션 분류

검색결과 8건 처리시간 0.024초

안드로이드 플랫폼에서 악성 행위 분석을 통한 특징 추출과 머신러닝 기반 악성 어플리케이션 분류 (Malware Application Classification based on Feature Extraction and Machine Learning for Malicious Behavior Analysis in Android Platform)

  • 김동욱;나경기;한명묵;김미주;고웅;박준형
    • 인터넷정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.27-35
    • /
    • 2018
  • 본 논문은 안드로이드 플랫폼에서 악성 어플리케이션을 탐지하기 위한 연구로, 안드로이드 악성 어플리케이션에 대한 위협과 행위 분석에 대한 연구를 바탕으로 머신러닝을 적용한 악성 어플리케이션 탐지를 수행하였다. 안드로이드의 행위 분석은 동적 분석도구를 통해 수행할 수 있으며, 이를 통해 어플리케이션에 대한 API Calls, Runtime Log, System Resource, Network 등의 정보를 추출할 수 있다. 이 연구에서는 행위 분석을 통한 특징 추출을 머신러닝에 적용하기 위해 특징에 대한 속성을 변환하고, 전체 특징에 대한 머신러닝 적용과 특징들의 연관분석을 통한 주성분분석으로 특징간의 상관분석으로 얻은 머신러닝 적용을 수행하였다, 이에 대한 결과로 악성 어플리케이션에 대한 머신러닝 분류 결과는 전체 특징을 사용한 분류 결과보다 주요 특징을 통한 정확도 결과가 약 1~4%정도 향상되었으며, SVM 분류기의 경우 10%이상의 좋은 결과를 얻을 수 있었다. 이 결과를 통해서 우리는 전체적인 특징을 이용하는 것보다, 주요 특징만을 통해 얻을 결과가 전체적인 분류 알고리즘에 더 좋은 결과를 얻을 수 있고, 데이터 세트에서 의미있는 특징을 선정하는 것이 중요하다고 파악하였다.

선형 SVM을 사용한 안드로이드 기반의 악성코드 탐지 및 성능 향상을 위한 Feature 선정 (Linear SVM-Based Android Malware Detection and Feature Selection for Performance Improvement)

  • 김기현;최미정
    • 한국통신학회논문지
    • /
    • 제39C권8호
    • /
    • pp.738-745
    • /
    • 2014
  • 최근 모바일 사용자들이 증가하면서 모바일 어플리케이션 또한 계속적으로 증가하고 있다. 모바일 어플리케이션이 증가하면서 사용자들은 모바일 장치에 은행정보, 위치정보, 아이디, 패스워드 등의 민감한 정보들을 저장하고 있다. 따라서 최근에는 PC를 타겟으로 하는 악의적인 어플리케이션보다 모바일 장치를 타겟으로 하는 악의적인 어플리케이션들이 증가하고 있는 추세이다. 특히 안드로이드 플랫폼의 경우 오픈 플랫폼으로써 사용자들에게 악성 코드를 포함한 어플리케이션을 배포하기 유리한 환경을 가지고 있다. 본 논문에서는 안드로이드 환경에서 악성코드를 포함한 어플리케이션을 탐지하기 위해 선형 SVM(Support Vector Machine) 기계학습 분류기를 적용한 악성코드 탐지 시스템의 성능을 분석한다. 또한 모바일 악성코드의 탐지 성능 향상을 위한 feature를 제시하고, 의미있는 feature를 선정한다.

분류 알고리즘 기반 URL 이상 탐지 모델 연구 제안 (A Study proposal for URL anomaly detection model based on classification algorithm)

  • 김현우;김홍기;이동휘
    • 융합보안논문지
    • /
    • 제23권5호
    • /
    • pp.101-106
    • /
    • 2023
  • 최근 사이버 공격은 지능적이고 지속적인 피싱사이트와 악성코드를 활용한 해킹 기법을 활용하는 사회공학적 공격이 증가하고 있다. 개인 보안이 중요해지는 만큼 웹 어플리케이션을 이용해 악성 URL 여부를 판별하는 방법과 솔루션이 요구되고 있다. 본 논문은 악성 URL를 탐지하는 정확도가 높은 기법들을 비교하여 각각의 특징과 한계를 알아가고자 한다. 웹 평판 DB 등 기반 URL 탐지 사이트와 특징을 활용한 분류알고리즘 모델과 비교하여 효율적인 URL 이상탐지 기법을 제안하고자 한다.

카테고리와 권한을 이용한 안드로이드 악성 앱 탐지 (The Detection of Android Malicious Apps Using Categories and Permissions)

  • 박종찬;백남균
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.907-913
    • /
    • 2022
  • 전 세계 스마트폰 이용자 중 약 70%가 안드로이드 운영체제 기반 스마트폰을 사용하고 있으며 이러한 안드로이드 플랫폼을 표적으로 한 악성 앱이 지속적으로 증가하고 있다. 구글은 증가하는 안드로이드 대상 악성코드에 대응하기 위해 'Google Play Protect'를 제공하여 악성 앱이 스마트폰에 설치되는 것을 방지하고 있으나, 아직도 많은 악성 앱들이 정상 앱처럼 위장하여 구글 플레이스토어에 등록되어 선량한 일반 사용자의 스마트폰을 위협하고 있다. 하지만 일반 사용자가 악성 앱을 점검하기에는 상당한 전문성이 필요하기에 대부분 사용자는 안티바이러스 프로그램에 의존하여 악성 앱을 탐지하고 있다. 이에 본 논문에서는 앱에서 쉽게 확인이 가능한 카테고리와 권한만을 활용하여 앱의 불필요한 악성 권한을 분류하고 분류한 권한을 통해 악성 앱을 쉽게 검출할 수 있는 방법을 제안한다. 제안된 방법은 '상용 악성 앱 검출 프로그램'과 미탐율·오탐율 측면에서 비교 분석하여 성능 수준을 제시하고 있다.

머신러닝을 이용한 권한 기반 안드로이드 악성코드 탐지 (Android Malware Detection Using Permission-Based Machine Learning Approach)

  • 강성은;응웬부렁;정수환
    • 정보보호학회논문지
    • /
    • 제28권3호
    • /
    • pp.617-623
    • /
    • 2018
  • 본 연구는 안드로이드 정적분석을 기반으로 추출된 AndroidManifest 권한 특징을 통해 악성코드를 탐지하고자 한다. 특징들은 AndroidManifest의 권한을 기반으로 분석에 대한 자원과 시간을 줄였다. 악성코드 탐지 모델은 1500개의 정상어플리케이션과 500개의 악성코드들을 학습한 SVM(support vector machine), NB(Naive Bayes), GBC(Gradient Boosting Classifier), Logistic Regression 모델로 구성하여 98%의 탐지율을 기록했다. 또한, 악성앱 패밀리 식별은 알고리즘 SVM과 GPC (Gaussian Process Classifier), GBC를 이용하여 multi-classifiers모델을 구현하였다. 학습된 패밀리 식별 머신러닝 모델은 악성코드패밀리를 92% 분류했다.

Office Open XML 문서 기반 악성코드 분석 및 탐지 방법에 대한 연구 (A Study of Office Open XML Document-Based Malicious Code Analysis and Detection Methods)

  • 이덕규;이상진
    • 정보보호학회논문지
    • /
    • 제30권3호
    • /
    • pp.429-442
    • /
    • 2020
  • 최근 침해사고에서 오피스 문서를 통한 공격 비중이 높아지고 있다. 오피스 문서 어플리케이션의 보안이 점차 강화되어왔음에도 불구하고 공격기술의 고도화, 사회공학 기법의 복합적 사용으로 현재도 오피스 문서를 통한 공격이 유효하다. 본 논문에서는 악성 OOXML(Office Open XML) 문서 탐지 방법과 탐지를 위한 프레임워크를 제안한다. 이를 위해 공격에 사용된 악성파일과 정상파일을 악성코드 저장소와 검색엔진에서 수집하였다. 수집한 파일들의 악성코드 유형을 분석하여 문서 내 악성 여부를 판단하는데 유의미한 의심 개체요소 6가지를 구분하였으며, 악성코드 유형별 개체요소 탐지 방법을 제안한다. 또한, 탐지 방법을 바탕으로 OOXML 문서 기반 악성코드 탐지 프레임워크를 구현하여 수집된 파일을 분류한 결과 악성 파일셋 중 98.45%에 대해 탐지함을 확인하였다.

SMiShing 어플리케이션 탐지 모델에 관한 연구 (A Study on SMiShing Application Detection Technique)

  • 장현수;손태식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.416-419
    • /
    • 2014
  • 스미싱(SMiShing) 공격은 문자메시지(SMS)를 이용하여 정보를 유출하거나 타인에게 피해를 주는 행위를 일컫는다. 본 논문에서는 공격자의 공격유형에 따라 스미싱을 "직접 정보 유출", "파밍/피싱 사이트 유도", "악성어플리케이션 다운로드 유도"로 분류하였고 스미싱 공격의 시나리오를 통해 스미싱 공격을 표현하였다. 그 후 스미싱 방지 기술 동향을 파악을 위한 기존의 대응 기법들을 조사를 하고 기존의 스미싱 탐지 기법인 URL 검사와 APK 파일 분석 기법을 접목시킨 스미싱 탐지 모델을 제안한다.

플래시 TAG Frequency를 이용한 악성 플래시 탐지 기술 (Flash Malware Detection Method by Using Flash Tag Frequency)

  • 정욱현;김상원;최상용;노봉남
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.259-263
    • /
    • 2015
  • 다수 사용자들이 이용하는 범용 어플리케이션에 존재하는 원격권한 획득이 가능한 취약점을 악용한 공격이 증가하고 있다. 특히, 플래시 플레이어는 브라우저, 오피스 등 다양한 플랫폼에서 사용이 되고 있어, 공격의 주요 대상이 되고 있으며 이를 대응하기 위한 연구가 진행되고 있다. 하지만 기존의 연구는 ActionScript에 대한 사전 분석된 특성을 이용해 탐지하기 때문에 신종/변종 탐지에 한계가 있다. 한계점의 개선을 위해 본 논문에서는 사전 분석된 특성을 사용하지 않고 플래시의 Tag빈도를 기계학습을 적용해 악성/정상 플래시에 대한 분류방법을 제안하며, 실험을 통해 제안한 방법이 기존 연구의 한계점을 극복하고 신종/변종 악성 플래시를 효과적으로 탐지 할 수 있음을 검증한다.

  • PDF